प्रगति प्रतिवेदन: Progress Report Volume 2: Entomology & Plant Pathology

अखिल भारतीय समन्वित अनुसंधान परियोजना: चावल All India Coordinated Research Project on Rice (AICRPR)

भाकृअनुप-भारतीय चावल अनुसंधान संस्थान ICAR-Indian Institute of Rice Research Indian Council of Agricultural Research Rajendranagar, Hyderabad - 500 030

PROGRESS REPORT 2023

Vol. 2

CROP PROTECTION (ENTOMOLOGY AND PLANT PATHOLOGY)

All India Coordinated Research Project on Rice

Indian Institute of Rice Research (Indian Council of Agricultural Research) Rajendranagar, Hyderabad – 500 030, (Telangana)., India Correct citation: ICAR-Indian Institute of Rice Research, 2024 Progress Report, 2023, Vol.2, Crop Protection (Entomology and Plant Pathology) All India Coordinated Research Project on Rice ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad – 500 030, Telangana State, India

Preface

Rice is the most important food crop of our country and identifying solutions for issues faced in cultivation and production of the crop is key answer for national food security. Under the All India Coordinated Research Project on Rice (AICRPR), evaluation of varietal improvement, crop production and crop protection technologies across locations has been continuing to contribute towards strategies strengthening rice farmers' efforts towards sustainable rice production. About 400 scientists, belonging to ICAR - Indian Institute of Rice Research, 45 funded and more than hundred voluntary centres of State Agricultural Universities, Departments of Agriculture, ICAR Institutes and Private Undertakings work towards progress of rice research under the umbrella of AICRPR. This volume reports the salient findings of experimental trials in Entomology and Pathology conducted during 2023. The scientists involved in AICRRP system conducted majority of the trials allotted showing their commitment to the programme. The major goal of Crop Protection programme of AICRPR is to develop broad based, environmentalfriendly, cost effective and adoptable IPM technologies which can help in alleviating socio-economic constraints by providing gainful benefits for rice farmers in the country. Emphasis is on ecologically safe and cost optimizing IPM and IRM components such as host plant resistance, ecological studies, semiochemicals, biocontrol agents, influence of agronomic practices, utilization as well as need based application of safe chemicals and also identification of new pests and diseases in Rice ecosystem in India along with weather parameters under the umbrella of AICRPR. Regular monitoring of pest occurrence at various locations across nation is undertaken to know changing pest scenario and to have timely management interventions. Efforts are underway to build decision support systems for assisting farmers in decision making. I compliment the efforts of the entire staff of Entomology and Plant Pathology including Principal Investigators, Cooperating Scientists, technical and supporting personnel for their contribution in bringing out this document containing useful and relevant information related to rice crop protection technologies across diverse ecosystem for increasing and stabilizing rice production in India.

& and Lite

(R. M. Sundaram)

2. ENTOMOLOGY TRIALS Kharif 2023

CONTENTS	PAGE
SUMMARY	
2.1 HOST PLANT RESISTANCE STUDIES	
Planthopper Screening Trial (PHS)	2.1
Gall Midge Screening Trial (GMS)	2.5
Leaf Folder Screening Trial (LFST)	2.6
Stem Borer Screening Trial (SBST)	2.8
Multiple Resistance Screening Trial (MRST)	2.9
National Screening Nurseries (NSN)	
a. IIRR-National Screening Nurseries (IIRR-NSN)	2.12
b. NRRI-National Screening Nurseries (NRRI-NSN)	2.22
2.2 INSECT BIOTYPE STUDIES	
Planthopper Special Screening Trial (PHSS)	2.25
Gall Midge Biotype Trial (GMBT)	2.26
Planthopper Population Monitoring Trial (PHPM)	2.30
Gall Midge Population Monitoring Trial (GMPM)	2.34
2.3 CHEMICAL CONTROL STUDIES	
Evaluation of granular insecticides against gall midge (EIGM)	2.37
Prophylactic management of rice hoppers in southern black streak	2.46
virus disease affected areas (PMRH)	
	0.40
2.4 OPTIMUM PEST CONTROL TRIAL (OPCT)	2.49
2.5 ECOLOGICAL STUDIES	0.60
Cropping systems influence on Dest Incidence (CSID)	2.60
Evolution of Discrements blands for Incidence (CSIP)	2.69
Evaluation of Pheromone blends for insect Pests of rice (EPBI)	2.71
2.6 BIOCONTROL AND BIODIVERSITY STUDIES	0.74
Evaluation of Entomopathogens against sucking pests of fice (LESF)	2.74
O 7 INTEODATED DECT MANAOEMENT COUDIES	
2.7 INTEGRATED PEST MANAGEMENT STUDIES	0.94
Integrated Pest Management special Irial (IPMS)	2.84
2.8 ASSESSMENT OF INSECT PEST POPULATIONS	
Population dynamics of insect pests and natural enemies in rice	0.114
ecosystem (PDPNE)	4.114

Population dynamics of insect pests through Light Trap collections (LT)	2.128
Rabi 2022-23	
2.1 HOST PLANT RESISTANCE STUDIES	
Stem Borer Screening Trial (SBST)	2.139
Multiple Resistance Screening Trial (MRST)	2.140
National Screening Nursery (Boro) (NSN-BORO)	2.140
2.2 OPTIMUM PEST CONTROL TRIAL (OPCT)	2.141

Kharif 2023

Summary

All India Coordinated Entomology Programme organized and conducted during *kharif* 2023 with eight major trials encompassing various aspects of rice Entomology were conducted at 39 locations (IIRR, 29 funded & 9 voluntary centres) in 22 states and 2 Union territories. During *kharif* 2023, 326 experiments were conducted (98.2%) out of 332 experiments. Details of scientists involved in the program at headquarters, cooperating centres and the performance of centres is provided in Appendices I and II.

2.1 Host plant resistance studies comprised of six screening experiments involving 1685 entries which included 1420 pre-breeding lines, 97 hybrids, 2 varieties, 2 germplasm accessions and 164 check varieties. These entries were evaluated against 13 insect pests in 218 valid tests (47 greenhouse reactions and 171 field reactions). The results of these reactions identified 102 entries (6.05 % of the tested entries) as promising against various insect pests. Of these promising entries, 42 entries (41.18%) were under retesting. The trial wise summary of the results of the evaluations are given below:

Planthopper screening trial (PHS): Evaluation of 167 entries against the two planthoppers BPH and WBPH in 14 greenhouse and 8 field tests at 16 locations indicated 27 entries (including 17 breeding lines, four BPT 5204 gene pyramided lines, six BPT 5204 mutants) and 3 three checks as promising in 7 to 18 tests. Four breeding lines *viz.*, GP SS RIL-86*, BPT 3194*, BPT 3199*, KNM 14382* and two gene pyramided lines *viz.*, ISM3* and ISMA 13* of improved Samba Mahsuri from IIRR performed better in the second year of retesting.

In **Gall midge Screening Trial (GMS)** 95 entries evaluated in 9 field tests against 9 populations of gall midge helped in identification of 6 entries as most promising with nil damage in 4-5 tests of the 9 valid tests. Of these APKS 82-75, IBTWGL 21, WGL 1790, WGL 1792 were under retesting. RMS (ISM 18), RMS (ISM-B-4) were promising in the first year of testing.

Field evaluation of 25 entries replicated thrice at 18 locations in **Leaf Folder Screening Trial (LFST)** during Kharif 2023 revealed that 23 entries were promising in 4-9 tests out of 15 valid field tests. In the second year of testing, RP5564 PTB 2-4-2-1-1 was found promising in 9 of the 15 valid tests while three entries, *viz.*, RP5564 PTB 1-4-1, RP5564 PTB 2-4-1-5 and RP5564 PTB 1-1-1-2 were promising in 8 out of 15 valid field tests. Six entries were found promising in 7 tests, five entries promising in 6 tests, five entries in 5 tests and three entries in 4 tests out of 15 valid field tests. **Stem borer screening trial (SBST)** Evaluation of entries in 20 valid field tests for dead hearts and white ear damage identified 8 entries as promising in 3 to 5 of the 20 tests in terms of low dead heart (\leq 5% DH) and white ear damage (\leq 5% WE). They were also promising in 1 to 4 tests of the 6 valid tests with higher grain yield (\geq 15.0 g/hill) under infested conditions in reproductive phase suggesting that recovery resistance and tolerance could be the mechanism in these entries as they have good grain yield despite damage. The mean no. of larvae in the stubbles in these entries varied from 0.29-1.10/hill). RP5564 PTB 2-4-2-1-2, RP5564 PTB 1-4-2, RP5564 PTB 1-3, RP5564 PTB 1-4-1-2 and RP5564 PTB 2-4-2-1-1 were promising in second year of testing.

Multiple resistance screening trial (MRST) was constituted with 32 entries which included breeding lines, germplasm accession and check varieties and evaluated at 27 locations against 13 insect pests. Evaluation of 32 entries in 8 greenhouse and 38 field tests against 6 insect pests helped in identification of 6 test entries and 3 checks as promising in 4-8 tests against 2-3 insect pests with a PPR of 3.6-15.9. Of these 5 entries *viz.*, RPBio4918- DB- NPK13, WGL 1062, RP Bio 4918-230, NND6 and RP 6461-248-1 were promising in second year of testing. RPGP-3000-179-3-9-1 was promising in first year of testing in 8 tests against PH and stem borer. The check lines Suraksha, RP 2068-18-3-5 and PTB 33 were promising in 4-8 tests against 3- 4 pests with a PPR of 5.4 -15.9.

National Screening Nurseries (NSN): IRRI-National Screening Nurseries (NSN) comprised of 4 trials -National Screening Nursery 1 (NSN1), National Screening Nursery 2 (NSN2), National Screening Nursery – Hills (NSN hills) and National Hybrid Screening Nursery (NHSN).

IIRR-NSN1: Evaluation of 442 entries at 19 locations in 35 valid tests (7 greenhouse and 28 field tests) against 6 insect pests identified eleven entries *viz.*, IET nos 30841, 30233, 30261, 29726, 29891, 30176, 29690, 30660, 32073, 29935, 32056 as promising in 5- 8 tests of the 35 valid tests against two to four pests. RP2068-18-3-5 and PTB 33 were promising in 5 and 9 tests, respectively

IIRR-NSN2: Evaluation of 653 entries along with 24 checks in 23 valid tests (5 greenhouse and 18 field tests) against 5 insect pests identified, IET nos 31628 and 31724 in 7 tests and IET Nos 31682, 31690 and 31710 in 6 tests as promising, RP2068-18-3-5 was promising in 3 tests and PTB-33 was promising in 4 tests.

IIRR- NSN hills: 96 entries were evaluated at 8 locations in 16 valid tests (6 greenhouse and 10 valid field tests) against 7 insect pests. Three test entries *viz.*, 29654, 31393, 31395 along with Vikramarya, Swarnadhan, CO39 & Aganni were promising in 2 tests against 1-3 pests. PTB 33 was promising in 4 tests against planthoppers out of the 16 valid tests.

IIRR-NHSN: In this trial, 97 hybrids along with 33 checks were evaluated in 7 greenhouse and 19 field tests against 5 insect pests at 12 locations in 26 valid tests of the 14 locations where the trial was conducted. The results identified IET Nos 31444, 31453 and 31474 as promising in 4 of the 26 valid tests. PTB33 was promising in 7 valid tests; and RP 2068-18-3-5 was promising in 4 tests of the 26 valid tests.

NRRI-NSN1: Evaluation of 87 entries in NSN-1 in 4 greenhouse and 17 field tests against 7 insect pests in 21 valid tests helped in identification of 3 entries namely IET 31201, IET 29308, IET 31202 as promising in 4 tests against 3 insect pest damages.

NRRI-NSN2: Evaluation of 172 entries in NSN-2 in 4 greenhouse and 9 field tests against 5 insect pests in 13 valid tests helped in identification of 4 entries namely IET nos. 32095, 32114, 32113, 32159 as promising in 2- 3 tests against 2-3 insect pest damages. Resistant checks CR Dhan 317 and CR Dhan 805 were resistant to BPH in the valid tests. Aganni were promising against gall midge.

2.2 Insect biotype studies included four trials 1. Planthopper Special Screening Trial (PHSS) 2. Gall midge biotype trial (GMBT). 3. Planthopper population monitoring (PHPM) trial and 4) Gall midge population monitoring trial (GMPM).

Planthopper Special Screening Trial (PHSS) Among the 17 gene differentials evaluated, two differentials *viz.*, PTB 33 and RP 2068- 18-3-5 were promising in 13 and 10 locations respectively out of 13 locations. Swarnalatha performed better in 9 locations and T12 performed better in 5 locations. Babawee and Pokkali were promising at 4 locations each. ARC 10550 showed low damage at 3 locations. Three gene differentials *viz.*, Rathu Heenati, IR-65482-7-2-216-1-2-B, MUTNS 1 showed promising reaction at 2 locations each. Five gene differentials *viz.*, ASD7, Chinasaba, IR 36, IR 64 and Milyang 63 performed better at one location each. Two gene differentials OM 4498 and IR-71033-121-15 showed susceptible reaction at all test locations.

Under **Gall midge biotype trial (GMBT)** reaction of 20 differentials in five different groups along with TN1 as susceptible check was noted against different biotypes and populations of gall midge at 20 locations. Evaluation of the gene differentials in one greenhouse and 17 valid field tests at 17 locations identified Aganni (Gm8), INRC 3021(Gm8) as promising in 10 and 9 tests, respectively of the 18 valid tests. INRC17470 was promising in 7 tests. W1263 and Kavya (Gm1) and RP5923 (gm3) were promising in 7 tests each of the 18 valid tests. The results suggest that donors with Gm8 and Gm1 gene confer resistance to gall midge across most the test locations.

In **Planthopper population monitoring trial (PHPM),** the virulence monitoring studies of brown planthopper populations using four gene differentials *viz.*, PTB 33, RP 2068-18-3-5, RP Bio4918-230S and Salkati along with susceptible variety,

TN1 conducted at six locations revealed that IIRR brown planthopper population was more virulent than the other BPH populations *viz.*, Ludhiana, Pantnagar and New Delhi in terms of highest nymphal hatching, short incubation and nymphal periods, lowest winged insects. Among the gene differentials, BPH populations were less virulent on PTB 33 in terms of low nymphal hatching, low nymphal survival, prolonged egg period and nymphal duration, more males and more winged insects.

Virulence composition of gall midge populations was monitored in **Gall midge population monitoring trial (GMPM)** at six locations across four southern states in India *viz.*, Jagtial, Gangavathi, Moncompu, Pattambi, Ragolu and Warangal through single female progeny tests. The results suggest that there is variation in the pattern of virulence. Aganni (*Gm8*) holds promise at Jagtial, and Ragolu but low virulence was observed at Warangal. Low virulence against W1263 (*Gm1*) was observed at Pattambi. Akshayadhan (with *Gm4* + *Gm8*) was promising at Jagtial and low virulence was recorded at Warangal. However, a close monitoring of the virulence pattern in endemic areas is important for deployment of effective genes.

Evaluation of granular insecticides for the management of gall midge (EIGM) In this trial, for gall midge, T12 (fipronil 0.3 GR in nursery + chlorantraniliprole 0.4 GR in the main field) was most effective with significantly lower silver shoots (9.1%) with 49.2 % reduction in silver shoots. T13 (fipronil 0.3 GR in nursery+ cartap hydrochloride 4% GR in the main field), T10 (seed treatment with thiamethoxam 25% WG + chlorantraniliprole granules in main field) and T9 (seed treatment with thiamethoxam + fipronil granules in main field) were comparable to the best treatment). For dead hearts (DH); T10 (seed treatment with thiamethoxam 25% WG + chlorantraniliprole 0.4 GR in the main field) was the most effective treatment with 77.9% reduction over the untreated control. In case of WE, T13 (fipronil 0.3 GR in nursery+ cartap hydrochloride 4% GR in the main field) (47.7 % reduction over control) was the best treatment followed by T12 (fipronil 0.3 GR+ chlorantraniliprole 0.4 GR in the main field) (47.4% reduction over control).

With respect to yield, T10 (seed treatment with thiamethoxam 25% WG + chlorantraniliprole granules in main field) was the best treatment with significantly higher yield (4372.5 kg/ha) as compared to remaining treatments with 67.2 % increase over control. T9 (seed treatment with thiamethoxam + fipronil granules in main field) (4205.9 kg/ha) was the second best treatment with 60.8 % increase in yield over control.

Prophylactic management of rice hoppers in southern black streak virus disease affected areas (PMRH) in this trial, the two tested modules were effective and resulted in 36 to 49 per cent reduction in planthopper population over the untreated control. At Ludhiana, Module-2 was superior with 49 per cent reduction in the planthopper population. However, during the crop season southern black streak virus disease was not recorded in the experimental locations. Application of insecticides resulted in significant gain in grain yield. At Pantnagar, Module -1 was

superior with 18.6 per cent yield increase (5375 Kg/ha) over the untreated control (4533 Kg/ha). At Ludhiana also both the modules showed similar positive effect on grain yield and Module-2 resulted in 15.8 per cent higher grain yield (6790 Kg/ha) over the untreated control (5862 Kg/ha).

Optimum Pest Control Trial (OPCT) was initiated in kharif 2022 to evaluate the performance of the identified multiple pest resistant rice cultures under protected and unprotected conditions against the pest damages in a location. In this trial, 9 resistant cultures along with TN1 were evaluated at 10 locations. Silver shoot damage by gall midge was reported from 5 locations and was significantly lower (1.43-2.71%SS) in W1263 (Gm1), CUL M9, Suraksha (Gm11), followed by Akshyadhan PYL, as compared to other varieties. These entries were possessing different gall midge resistance genes and can be utilized as donors in the breeding programs for development of gall midge resistant varieties for the endemic locations. Dead heart damage was reported from 9 locations at different dates of observations and it was significantly lower in CUL M9, W1263, and Suraksha (0.9-2.13%DH) followed by CR 3006-8-2 and RP2068-18-3-5. White ear damage was reported from 8 locations. Cul M9 and Suraksha recorded significantly lower damage followed by W 1263 and KMR3 as compared to other test lines (F val 24.78 P val 0.0000). Leaf folder damage was significant at 6 locations. Among the test entries, damage was significantly low in Cul M9 (0.5%DL) followed by Suraksha (3.56 %DL) and W1263 (4.2%DL). Protected treatments had significantly lower damage (4.11%DL) as compared to unprotected (6.3%DL) treatments. Analysis of grain yield from 8 locations revealed that among the test entries, yields were higher in KMR 3 and RP5587-273-1-B-B-B (4.2-4.3/ha) followed by CR Dhan 317 (F val 4.94, P val 0.0). Cul M9 and Suraksha had lower damage for gall midge, stem borer and leaf folder though the yields are very low.

Influence of crop establishment methods on pest incidence (IEMP), a collaborative trial with Agronomy, was conducted at 12 locations during Kharif 2023. Across the locations, the incidence of dead hearts (12.1%) and white ears (11.4%) caused by stem borer was significantly high in aerobic rice followed by direct seeding and puddled direct seeding. Gall midge (14.1% SS) and leaf folder (14.2% LFDL) incidence was significantly high in semi-dry rice followed by direct seeding. The incidence of thrips was significantly high in puddled direct seeding (11.7% THDL) and was at par with normal transplanting (11.2% THDL). The incidence of caseworm, blue beetle, BPH and WBPH was low in all the establishment methods. Overall, the incidence of insect pests was high in aerobic rice followed by direct seeding and semi-dry rice while the incidence was low in normal transplanting and mechanical transplanting methods of crop establishment.

Cropping system influence on insect pest incidence (CSIP), a collaborative trial with Agronomy was conducted at three locations, Ghaghraghat, Karjat and Titabar

during Kharif 2023. Low incidence of stem borer, leaf folder, whorl maggot, and case worm was observed in different main plots of crop establishment methods and sub-plots of straw incorporation techniques at all the locations.

Evaluation of pheromone blends for insect pests of rice (EPBI) trial was conducted at 13 locations during Kharif 2023. The field trial was constituted with normal and slow-release formulations of yellow stem borer and rice leaf folder. The slow-release formulations recorded maximum catches compared to the normal formulations in case of yellow stem borer and leaf folder across locations. The peak mean catches of yellow stem borer were high in slow-release pheromone formulation at Chinsurah (44.2/week) followed by Jagtial (29.6/week). Similarly, rice leaf folder catches were high at Chinsurah (45.8/week) followed by Navsari (26.4/week) compared to normal pheromone formulations.

Evaluation of entomopathogens against sucking pests of rice was conducted in eleven locations to test the effectiveness of entomopathogens *viz.*, *Lecanicillium saksenae, Beauveria bassiana* and *Metarhizium anisopliae.* Treatments with biological control agents generally demonstrated comparable or better results in reducing pest populations while maintaining crop yield compared to the chemical pesticide and the control group. *L. saksenae, B. bassiana*, and *M. anisopliae* treatments exhibited promising efficacy in controlling pests such as ear head bugs and hoppers. Natural enemies (Mirid bugs, Spiders, Coccinellids) were more abundant in plots treated with biological control agents, suggesting a potential ecosystem-friendly approach to pest management. Overall, the data suggests that biological control agents could be viable alternatives or supplements to chemical pesticides for pest management.

Integrated Pest Management special (IPMs) trial was conducted with zone-wise practices at 18 locations during Kharif 2023 and two locations during Rabi 2022-23 in 41 farmers' fields. In Zone I (Hilly areas), dead hearts caused by black beetle was predominant in both IPM (36.4%) and FP plots (20.6%) followed by leaf folder in FP plots (19.4%). Grasshopper damage was significantly high in FP plots (23.5% GHDL) as compared to IPM plots (19.6% GHDL). In Zone II (Northern areas), low incidence of stem borer, leaf folder, BPH, and WBPH was observed. However, leaf folder incidence (24.4% LFDL) was higher in FP plots at Kaul. In Zone III (Eastern areas), low incidence of stem borer, leaf folder and BPH was observed. In Zone IV (North Eastern areas), dead heart damage caused by stem borer was significantly low in IPM plot (5.0% DH) compared to FP plot (15.3% DH).

In Zone V (Central areas), a high incidence of gall midge was observed in FP plot (12.7% SS) compared to IPM plots (1.9% SS) at Jagdalpur. However, the incidence of stem borer, leaf folder, whorl maggot and thrips was low. In Zone VI (Western areas), WBPH incidence was low in IPM plots (14-17/hill) as compared to IPM plots (20-23/hill) at Nawagam. The incidence of stem borer and leaf folder was low in both IPM and FP plots across locations. In Zone VII (Southern areas), stem

borer incidence was high in FP plots at Aduthurai (30.0-42.3% DH) compared to IPM plots (12.5-13.3% DH). Similarly, gall midge and leaf folder incidence were high in FP plots and low in IPM plots in all three farmers' fields at Aduthurai. BPH incidence was significantly high in IPM plots as compared to FP plots in all the farmer's fields at Gangavathi and Maruteru.

Weed population and weed dry biomass were significantly low in IPM plots as compared to FP plots across the locations. IPM implemented plots resulted in mean grain yield advantage of 49.1%, 4.4%, 25.5%, 20.7%, 18.8%, 21.0% and 14.5%, respectively in Zone-I, II, III, IV, V, VI and VII over the farmer's practices. In IPM adopted fields, the mean weed population reduction over the Zones ranged from 4.7% in Zone-I (Hills) to 80.5% in Zone-VII (Southern) at Active Tillering stage and from 9.7% in Zone-III (Eastern) to 69.2% in Zone-VI (Western) at Panicle Initiation stage. The dry weed biomass reported from 10 locations showed that at both Active Tillering and Panicle Initiation stages, it was significantly reduced by 18.2% in Zone III (Eastern) to 80.1% in Zone-VII (Southern); 13.3% in Zone III (Eastern) to 89.7% in Zone-VII (Southern) respectively.

Adoption of IPM practices effectively reduced the disease progression of leaf blast, neck blast, bacterial blight, sheath blight, and brown spot in Zone II (Northern areas), leaf blast, neck blast, bacterial blight and false smut in Zone III (Eastern areas). There was significant reduction in the disease development of leaf blast, neck blast and sheath blight in Zone V (central areas), sheath rot, sheath blight and brown spot in Zone VI (Western areas), bacterial blight, false smut, leaf blast and neck blast in Zone VII (Southern areas) due to the adoption of IPM practices

Grain yields were significantly high in IPM-implemented plots resulting in high gross returns. Overall, BC ratios of IPM plots were superior to that of FP mainly due to better yields, lower input costs, and better returns.

Population dynamics of insect pests and natural enemies in rice ecosystem was carried out at 26 locations across the country to know the population dynamics of insect pests in relation to changes in weather parameters, crop phenology, growing season and cropping systems for designing ecologically sound and economically viable pest management strategies. Yellow stem borer, brown planthopper, leaf folder and gall midge were observed as major pests of rice across the centres during kharif, 2023. Rice hispa and whorl maggot were recorded as minor pests. Pest incidence varied across different zones, with factors like weather parameters and crop phenology exerting significant influence on pest populations. In Zone III and Zone V, gall midge and stem borer incidence displayed a pronounced correlation with maximum and minimum temperatures. Furthermore, the study revealed intriguing patterns in pest damage across various regions. In Zone IV, peak incidence of gall midge occurred 33rd SMW whereas in Zone VII it happened during the 39th SMW. The comprehensive investigation conducted across multiple regions sheds light on the complex interactions between insect pests, natural enemies, and environmental variables within rice ecosystems.

Population dynamics of insect pests through Light trap catches revealed that yellow stem borer, leaf folder, and hoppers continued to be the most important pests in terms of numbers as well as spread across the locations. Gall midge continues to be an endemic pest. However, case worm, and gundhi bug showed an increase in the spread and intensity of incidence posing concern for future. Patterns in seasonal incidence and population build up based on light trap data indicates that the key pests are reaching their peak levels in the months of October and November in the kharif season. Therefore, strategies are to be timed accordingly for the effective management of insect pests in rice.

2.1 HOST PLANT RESISTANCE STUDIES

Host plant resistance trials were conducted with the main objective of identifying new sources of resistance to major insect pests, evaluation of performance of breeding lines and also characterization of insect pest populations from various hot spots. To achieve these objectives, six trials *viz.*, i) Planthopper screening trial (PHS) ii) Gall midge screening trial (GMS), iii) Leaf folder screening trial (LFST), iv) Stem borer screening trial (SBST) v) Multiple resistance screening trial (MRST), and vi) National screening nurseries (NSN) were constituted and conducted. The results are summarized and discussed trial wise. In all 1685 entries were evaluated at 39 locations against 13 insect pests and 102 (6.05%) entries were identified as promising. The reaction of the entries to insect pests in each trial are tabulated in a separate volume **"Screening Nurseries: Vol. II – Diseases & Insect Pests".** The results are discussed trial wise:

i) Planthopper screening trial (PHS) The planthopper screening trial was constituted to find the promising entries to rice planthoppers *i.e.*, brown planthopper and whitebacked planthopper. The trial was constituted with 167 entries comprising of 15 breeding lines developed at RRU, ANGRAU, Bapatla; 18 breeding lines developed at APRRI, ANGRAU, Maruteru, 13 breeding lines developed at ARS, ANGRAU, Ragolu, 16 breeding lines developed at TNAU, Coimbatore; 6 breeding lines from RARS, PJTSAU, Jagtial; 11 breeding lines developed at Kunaram, PJTSAU; 4 breeding lines developed at ARI, PJTSAU; Rajendranagar, 21 breeding lines developed at RARS, PJTSAU, Warangal; 1 breeding line developed at ARS, UAS, Mugadh; 3 NILs in the genetic background of IR 24, 11 mutant lines derived from BPT 5204 along with BPT5204 (wild type), 2 mutant lines derived from N22, 5 recombinant inbred lines, 18 gene pyramided lines of Improved Samba Mahsuri developed at IIRR, Hyderabad along with three resistant checks PTB 33 (BPH), RP 2068-18-3-5 (BPH) and MO1 (WBPH) as well as one susceptible check TN1. Of these, eleven entries were under retesting. The entries were evaluated at 16 locations in 22 tests against brown planthopper (BPH), white-backed planthopper (WBPH) and mixed populations of planthoppers under both field and greenhouse conditions. Evaluation of entries in 11 greenhouse and 1 field test against brown planthopper, 3 greenhouse and 1 field test against whitebacked planthopper and 6 field tests against mixed populations of planthoppers revealed that 27 entries including seventeen breeding lines viz., GP SS RIL-86 *, BPT 3194*, BPT 3199*, CB 18586, TN TRH 99, CRCPT11, JGL 38935, KNM 14382*, PLA 100, MTU 2856-85-1-1-1, MTU 2716-28-2-1-2, MTU 2716-28-2-2-2, MTU 2720-28-2-1-1, MTU 2721-7-1-2-1, MTU 2721-7-1-2-2, Selection from RGL-11414, WGL 1792; four gene pyramided lines viz., ISM-1, ISM B-8, ISMA 13* and ISM-3* in the background of Improved Samba Mahshuri, six BPT 5204 mutant lines viz., RP5977-MS-112, RP6112-MS-M-23, RP6112-MS-113, RP5977-MS-41, RP6112-MS-M-140 and RP6740-SP-M-MS-70 including 3 resistant checks as

promising in 7-18 tests (Table 2.1.1). Four breeding lines viz., GP SS RIL-86 *, BPT 3194*, BPT 3199*, KNM 14382* and two gene pyramided lines of improved Samba Mahsuri viz., ISM 3* and ISMA 13* from IIRR performed better in the second year of retesting. The susceptible check, TN1 recorded damage score in the range of 8.5 to 9.0 in these valid tests. The universal checks viz., PTB 33 and MO1 performed well in 18 and 9 tests respectively. The breeding line, RP 2068-18-3-5 carrying BPH resistant Bph33t gene and identified as a donor check line for BPH performed better in 13 tests. Mixed populations of brown planthopper and whitebackedplanthopper were present at Aduthurai, Gangavathi, Jagitial, Maruteru, Pantnagar, Raipur, Sakoli and Warangal. Data on BPH and WBPH populations during the field evaluation at Gangavathi (BPH: WBPH in 1.9:1.0 ratio) revealed predominance of BPH over WBPH. At Aduthurai, throughout the crop season, brown planthopper population was more compared to white-backed planthopper (17 to 59 BPH: 1WBPH). At Nawagam, only WBPH was present. BPH was predominant throughout the crop season at Pantnagar (BPH is 1.4 to 14 times more than WBPH). At Raipur, BPH was in more numbers throughout the crop season (BPH is 10 times more than WBPH). At Rajendranagar, only BPH population was present. At Sakoli, brown planthopper dominated (1.2 to 6.1 times more) white-backed planthopper throughout the crop season except at the end of season (1.0WBPH: 0.7BPH).

Evaluation of 167 entries against the two planthoppers BPH and WBPH in 14 greenhouse and 8 field tests at 16 locations indicated 27 entries (including 17 breeding lines, four BPT 5204 gene pyramided lines, six BPT 5204 mutants) and three checks as promising in 7 to 18 tests. Four breeding lines viz., GP SS RIL-86, BPT 3194*, BPT 3199*, KNM 14382* and two gene pyramided lines viz., ISM3* and ISMA 13* of improved Samba Mahsuri from IIRR performed better in the second year of testing.*

RNR R 9.0 0.0 7.0 7.0 7.0 7.0 7.0 5.0 7.0 7.0 7.0 7.0 7.0 5.0 0.0 0.0 9.0 9.0 9.0 7.0 7.0 7.0 7.0 5.0 5.0 0.7 0.7 0.7 0.7 0.7 0.7 4 8.9 MGL 9.0 4.0 0.0 4.3 5.0 8.0 8.9 0.6 9.0 5.0 20 6.0 0.0 9.0 0.0 8.2 5.2 6.3 6.2 8.3 0.3 0.0 6.8 5.0 7.3 5.7 4 5.7 2.1 8.7 4 4 RPR 0.0 2.3 1.5 2.6 9.0 1.0 9.0 1.2 1.0 2.8 4.3 1.0 1.0 2.0 12 1.6 <u>1</u>0 2.3 <u>,</u> 1.0 3.0 4.1 12 4 <u>~</u> 1.2 0.0 0.7 с. Т 2.7 47 RNR 0.0 5.6 4.0 3.9 3.8 3 0.0 5.8 0.0 8.0 3.8 3.8 9.0 0.0 4.2 3.0 5.0 23 9.0 9.0 9.0 4.0 4.0 3.9 9.0 9.0 9.0 4.0 4.0 4.7 ~. . 6.3 4.1 3.7 PNT 1.0 0.0 0.0 0.0 7.0 7.0 7.0 7.0 5.0 0.0 0.0 5.0 5.0 0.7 5.0 5.0 9.0 5.0 9.0 9.0 9.0 9.0 9.0 0.0 5.0 5.0 1.0 37 3.0 5.0 7.0 Brown planthopper Damage score 2.9 <u>6.</u>0 7.6 8.5 8.4 6.8 7.8 5.8 6.8 2.6 4.5 7.6 5.0 4.0 Ŋ 8.3 5.0 4.3 7.0 6.0 7.2 3.0 2.0 3.4 5.0 30.0 8.4 3.4 4 <u>~</u>. 8.3 7.7 Glasshouse reaction MND <u>,</u> 5.0 9.0 0.0 0.0 0.0 0.0 5.0 3.0 5.0 5.0 5.0 0.0 3.0 3.0 5.0 5.0 5.0 5.0 7.0 3.0 5.0 5.0 3.0 5.0 0.0 5.0 3.0 5.0 0.7 0.7 43 LDN 3.5 8.3 NT 3.0 3.0 NT 3.0 9.0 3.0 3.0 3.0 3.0 NT 3.5 26 3.0 3.0 3.0 3.0 3.0 8.2 3.0 F 보보 F Γ F F F F F CTC 9.0 9.0 NT 9.0 9.0 9.0 3.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 5.0 5.0 5.0 3.0 3.0 0.0 3.4 5.0 5.0 20 3.0 9.0 NT 0. 9.0 9.0 F 4.8 7.6 4.8 8.6 4.6 CBT 4.0 6.9 5.8 4.8 7.0 5.0 23 7.4 7.0 5.0 5.0 6.2 5.0 8.4 5.4 5.0 5.0 5.0 5.2 5.0 4.2 7.4 5.2 5.7 5.7 5.0 5.1 ADT 4.3 4.3 4.3 5.0 4.3 5.0 7.0 0.7 9.0 5.0 2.3 2.3 7.0 2.3 2.3 3.0 2.3 3.0 3.0 3.0 4.3 37 8.3 3.0 0.0 0.0 5.7 3.7 2.7 3.7 7.7 IIRR 0.6 4.9 8.5 2.5 2.0 3.0 6.0 с. О 5.0 5.0 5.0 9.0 5.0 1.2 5.0 1.5 2.0 9.0 2.4 5.0 5.3 2.4 <u>~</u> 5.5 5.0 3.3 0.7 4. 4 50 0.7 Designation Selection from RGL-11414 RP6740-SP-M-MS-70 MTU 2716-28-2-1-2 MTU 2716-28-2-2-2 MTU 2856-85-1-1-1 MTU 2720-28-2-1-1 RP6112-MS-M-140 MTU 2721-7-1-2-2 MTU 2721-7-1-2-1 RP6112-MS-M-23 RP6112-MS-113 RP5977-MS-112 RP5977-MS-41 RP2068-18-3-5 GP SS RIL-86 KNM 14382* JGL 38935 **TN TRH 99** WGL 1792 BPT 3194* BPT 3199* CB 18586 CRCPT11 **ISMA 13**⁴ ISM B-8 PLA 100 ISM-3* PTB33 ISM-1 M01 Promising Level No. promising Entry no 102 105 106 109 109 1 122 60 5 16 23 27 27 27 23 37 37 39 51 58 65 147 40 22 78 92 õ 87

Table 2.1.1 Performance of the most promissing entries against planthoppers in PHS kharif 2023

* Entries under retesting

2.3

– Entomology
Ň
Vol.
2023,
Report
Progress
Annual
ICAR-IIRR

Table 2	2.1.1 Performance of th	e most	t prom	issing en	itries agai	inst plant	hoppe	rs in P	HS kha	rif 2023							
		WW	hite bac	sked plant	ropper			Plantho	ppers				No	of pro	omissinç	j tests	
Entry	Deciseration	IIRR	CBT	LDN	NWG	ADT	GNV	JGT	MTU	PNT	SKL	B	Н	WB	Ηd	Н	Total
ou	Designation	Glass	house r	eaction	FR			Field rea	action			Ъ	Field	НЭ	Field	Field	NPT
		Da	mage si	core	No./10h	No./10h	Dan	nage sci	ore	%HB	%DT	11	1	3	1	9	22
15	BPT 3194*	4.8	5.4	3.0	50	220	5.0	9.0	7.0	10.0	29.7	8	0	2	0	2	12
16	BPT 3199*	8.1	5.2	3.0	120	230	5.0	9.0	7.0	20.5	14.0	9	0	1	0	3	10
23	GP SS RIL-86 *	5.0	5.0	8.1	86	432	7.0	3.0	9.0	0.0	12.8	З	0	2	0	3	80
26	RP5977-MS-112	3.2	5.2	NT	80	191	5.0	3.0	NT	41.2	25.6	4	0	1	0	2	7
27	RP6112-MS-M-23	0.5	5.0	NT	80	183	5.0	3.0	9.0	21.6	28.3	2	0	2	0	3	7
28	RP6112-MS-113	1.7	5.8	NT	46	60	5.0	3.0	NT	100.0	19.4	4	0	-	0	4	6
29	RP5977-MS-41	1.4	5.8	NT	28	81	7.0	5.0	NT	27.9	44.2	9	0	-	-	2	10
31	RP6112-MS-M-140	4.9	5.0	3.0	156	228	9.0	9.0	9.0	44.8	26.0	4	0	3	0	0	7
37	RP6740-SP-M-MS-70	6.1	5.2	3.0	200	77	9.0	3.0	9.0	25.6	20.0	9	0	1	0	4	11
39	ISM-1	6.1	6.2	3.0	188	155	5.0	9.0	9.0	32.6	17.8	7	0	1	0	2	10
51	ISM B-8	1.3	9.0	3.0	226	59	9.0	9.0	9.0	18.3	20.9	6	0	2	0	2	13
57	ISMA 13*	6.6	5.3	3.0	64	140	7.0	7.0	9.0	100.0	29.2	9	0	1	0	0	7
58	ISM-3*	1.5	6.0	3.0	78	187	9.0	9.0	7.0	100.0	30.2	9	0	2	0	0	œ
65	CB 18586	6.7	5.0	8.0	58	211	9.0	3.0	9.0	23.7	22.7	4	0	t	0	2	7
78	TN TRH 99	1.6	6.1	8.3	68	351	7.0	3.0	9.0	15.7	18.8	e	0	1	0	3	7
81	CRCPT11	7.1	6.8	8.3	104	144	9.0	9.0	9.0	13.3	25.5	9	0	0	0	1	7
87	JGL 38935	5.4	5.4	NT	38	180	7.0	5.0	9.0	19.6	37.3	5	0	0	1	-	7
92	KNM 14382*	0.5	5.6	3.0	54	313	9.0	5.0	9.0	21.6	20.8	4	0	2	0	-	7
102	PLA 100	1.7	5.4	NT	36	143	7.0	3.0	7.0	100.0	53.3	9	1	1	1	-	10
105	MTU 2856-85-1-1-1	5.6	5.9	NT	58	120	5.0	3.0	5.0	19.6	35.7	9	0	0	0	4	10
106	MTU 2716-28-2-1-2	2.4	5.3	NT	102	109	5.0	3.0	5.0	42.9	43.4	7	0	1	0	3	11
107	MTU 2716-28-2-2-2	3.1	5.1	3.0	54	108	3.0	5.0	5.0	34.0	35.1	5	0	2	0	2	6
108	MTU 2720-28-2-1-1	2.6	5.3	3.0	62	107	5.0	5.0	5.0	35.9	46.4	10	0	2	0	2	14
109	MTU 2721-7-1-2-1	1.8	5.3	3.0	46	183	9.0	5.0	5.0	100.0	54.2	6	0	2	0	1	12
111	MTU 2721-7-1-2-2	2.6	5.4	3.0	54	408	7.0	3.0	7.0	33.3	35.8	8	0	2	0	-	11
122	Selection from RGL-11414	1.8	4.6	4.0	198	131	7.0	5.0	9.0	29.1	20.4	4	0	3	0	-	8
147	WGL 1792	5.7	7.0	NT	48	297	5.0	5.0	7.0	100.0	12.2	З	1	1	0	2	7
40	M01	1.9	5.0	3.0	110	388	9.0	1.0	9.0	14.9	17.5	З	0	3	0	3	6
60	PTB33	3.7	5.0	NT	NT	121	1.0	3.0	3.0	27.8	3.8	10	1	2	0	5	18
20	RP2068-18-3-5	6.0	5.1	3.0	76	170	5.0	7.0	7.0	1.9	23.8	10	0	-	0	2	13
Promisin	ig Level	5.0	5.0	5.0	40	100	5.0	3.0	5.0	30.0	20.0						
No. pron	nising	48	30	29	14	8	44	46	10	44	49						
	* Entripe under retecting																

Entries under retesting

ii) Gall Midge Screening Trial (GMS)

The objective of this trial was to evaluate the performance of the donors and breeding lines developed from known sources of gall midge resistance against various populations of gall midge. The trial was constituted with 95 entries (95 entries comprising of 82 breeding lines, 2 varieties, 2 germplasm lines and 9 insect checks). Of these 35 entries were under retesting. The nominations included breeding lines that were developed from 56 crosses bred at 11 centres, *viz.*, ICAR-IIRR; IBT PJTSAU; IGKVV Raipur, RARS Jagtial; ARS Kunaram; RARS Warangal; IRR Rajendranagar, RARS Pattambi, ARS Brahmavar, ARS Ragolu, and ARS Nellore where gall midge is an endemic pest. The entries were evaluated at 12 locations across the country against the prevailing gall midge populations. Reaction was recorded at 30 DAT, 50 DAT and 75 DAT as % DP and/or %SS. The reaction of the entries to various populations of gall midge from different locations in 9 valid tests is discussed as under:

APKS 82-75, GP 91, IBT WGL 31 and Aganni recorded nil plant damage in field reactions at **Jagdalpur and Chiplima**.

At Jagtial, field screening had identified 16 entries with nil damage along with the resistant check Aganni. At **Ranchi** only 6 entries recorded nil damage.

Akshayadhan (*Gm*4+*Gm*8), RP6505-32 and RMS (ISM 18) recorded nil damage at **Jagtial and Ranchi**.

APKS 82-75, JGL 41652, RP6290-22-4 (RMS-22-24), WGL 1790, RGL-7002 and recorded nil damage at both **Sakoli and Warangal** while W1263 recorded nil damage at Sakoli, Aganni was promising at Warangal.

At **Maruteru**, 17 entries had nil damage. The check variety W1263, recorded nil damage and Kavya had 5 % plant damage. None of the entries were promising in field screening at **Pattambi**.

At **Nellore** only IBTWGL 21*, WGL 1790*, WGL 1792*, WGL 1822 had nil damage. The results revealed that there is a variation in the performance of the lines which could be attributed to the variation in the virulence of the populations as reported in the other gall midge trials.

Overall reaction: Evaluation of 95 entries in 9 field tests against 9 populations of gall midge helped in identification of 6 entries as most promising with nil damage in 4-5 tests of the 9 valid tests **(Table 2.1.2)**. Of these APKS 82-75, IBTWGL 21, WGL 1790, WGL 1792 were under retesting. RMS (ISM 18), RMS (ISM-B-4) were promising in the first year of testing.

Table	2.1.2: Reacti	on of most promising c	ultures	to gal	l midge	e popu	lations	in GMS	, kharif	f 2023		
			CHP	JDP	JGT	RCI	SKL	WGL	PTB	MTU	NLR	Overal
Entry	Designation	Cross combination	GMB1	GMB1	GMB3	GMB3	GMB4	GMB4M	GMB5	GMB	GMB	I NPT
No.	Designation		50DT	75DT	75DT	50DT	50DT	75DT	50DT	75DT	75DT(RT)	٥
			%DP	%SS	%SS	%SS	%DP	%DP	%SS	%DP	%DP	3
3	APKS 82-75*	RP6504-75	0.0	0.0	0.0	4.4	0.0	0.0	24.8	45.0	30.0	5.0
6	IBTWGL 21*	MTUIL/RMS GM3	0.0	5.2	0.0	9.4	0.0	5.0	54.5	20.0	0.0	4.0
56	WGL 1790*	WGL 1100/JGL 19618	0.0	15.2	53.0	2.0	0.0	0.0	45.7	15.0	0.0	4.0
58	WGL 1792*	WGL 1100/JGL 19618	0.0	6.5	2.0	3.1	0.0	9.1	43.0	0.0	0.0	4.0
82	RMS(ISM 18)	Xa21/Pi2/Gm4/Gm8	0.0	10.0	0.0	0.0	5.0	0.0	37.3	10.0	70.0	4.0
87	RMS(ISM-B-4)	0.0	2.8	0.0	7.0	0.0	5.0	26.4	0.0	90.0	4.0	
20	Aganni	0.0	0.0	0.0	3.0	0.0	0.0	15.5	20.0	90.0	5.0	
Total tested				94	95	95	94	92	94	92	94	
Maxim	um damage in t	he trial	80.0	83.1	93.8	16.5	100.0	100.0	100.0	90.0	100.0	
Minim	um damage in th	ne trial	0.0	0.0	0.0	0.0	0.0	0.0	6.4	0.0	0.0	
Averag	je damage in the	e trial	15.9	11.0	41.7	6.6	24.0	38.1	38.2	18.4	59.4	
Damag	ge in TN1		50.0	17.1	78.4	5.5	58.3	70.0	66.4	61.7	60.0	
Promis	sing level		0	0	0	0	0	0	0	0	0	
No. pro	omising		45	4	16	6	38	9	0	17	4	*

under retesting

iii. Leaf folder screening trial (LFST)

Leaf folder screening trial (LFST) was constituted to find new sources of resistance to rice leaf folder, *Cnaphalocrocis medinalis* in the field. The trial composed of 10 nominations from Regional Agricultural Research Station (RARS) Pattambi,10 nominations from Rice Research Unit, Acharya NG Ranga Agricultural University, Bapatla, one nomination from Main Rice Research Station, Anand Agricultural University, Nawagam, two back-cross inbred lines (BILs) of Swarna/*Oryza nivara* from IIRR along with a susceptible check (TN1) and resistant check (W 1263). During *Kharif* 2023, the trial was conducted in a randomised block design with 25 entries and 3 replications at 19 locations.

entry

In the second year of testing, the maximum damage in the test entries varied between 15.1 and 54.5% whereas the average damage in the trial ranged from 7.6 to 39.5%. Data analysis revealed that 23 entries as promising in 4-9 tests of 15 valid field tests (**Table 2.1.3**). Nominations from Pattambi were promising at many locations whose parentage includes RP Bio226/IRGC 71598/MTU 1010. Nominations from Bapatla were also found promising at many locations.

RP5564 PTB 2-4-2-1-1 was promising in 9 out of 15 valid field tests. Three entries, *viz.*, RP5564 PTB 1-4-1, RP5564 PTB 2-4-1-5 and RP5564 PTB 1-1-1-2 were promising in 8 out of 15 valid field tests. Six entries, BPT 3077, BPT 3148, RP5564 PTB 1-4-1-1, RP5564 PTB 1-4-1-2, RP5564 PTB 1-4-2 and NPK 24 were found promising in 7 tests out of 15 valid tests. Five entries, BPT 3113, BPT 3130, RP5564 PTB 2-4-2-1-2, RP5564 PTB 1-1-1-4, and NPK 46 were promising in 6 out of 15 valid field tests. Five entries, *viz.*, BPT 3135, BPT 3182, BPT 3085, NWGR 16032 and RP5564 PTB 1-3 were promising in 5 out of 15 field tests. The rest of the three entries from Bapatla, BPT 3239, BPT 3068 and BPT 3192 were promising in 4 out of 15 valid field tests. The resistant check, W 1263 was promising in 11 out of 15 valid field tests.

		RPT	ADT	CHT	NHC	CTC	K.IT	KIII	NC	NIM	MSD	N R	SVN	NWG	PTR	RNR	
Decignation	Darentare	. U9		AR AR	20	2.0	Na Na	38	S O	07	0	200	and a second	en o	75	05	NPT
		DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	DAT	(15)
W 1263	Resistant check	13.4	15.5	18.2	4.7	14.3	11.7	19.9	17.4	19.1	8.3	12.2	0.0	18.8	20.2	2.3	-
RP5564 PTB 2-4-2-1-1	RP Bio226 x IRGC 71598 x MTU 1010	11.5	1.9	16.2	8.3	13.9	11.6	20.6	34.4	24.3	8.3	22.3	4.4	19.7	30.8	6.5	6
RP5564 PTB 1-4-1	RP Bio226 x IRGC 71598 x MTU 1010	14.3	4.5	17.9	9.2	22.6	13.5	21.3	25.3	20.5	7.6	9.2	8.7	19.8	34.7	8.0	8
RP5564 PTB 2-4-1-5	RP Bio226 x IRGC 71598 x MTU 1010	8.4	2.7	16.1	10.5	23.7	14.6	19.8	24.7	17.0	9.4	8.5	11.0	19.7	25.5	9.8	∞
RP5564 PTB 1-1-1-2	RP Bio226 x IRGC 71598 x MTU 1010	14.3	9.6	18.6	9.5	34.9	10.6	18.7	33.3	16.3	9.3	11.0	2.0	33.7	40.4	7.4	∞
BPT 3077	BPT 5204/ MTU 1075	9.6	8.1	21.4	9.3	25.8	12.1	19.9	37.0	18.9	8.4	17.2	5.7	30.6	45.5	7.3	7
BPT 3148	RP Bio 226/IRGC 23385// Nidhi/MTU 1081	13.2	6.7	20.3	7.0	16.1	10.5	24.3	35.7	17.8	9.4	9.8	20.8	30.8	36.7	9.5	7
RP5564 PTB 1-4-1-1	RP Bio226 x IRGC 71598 x MTU 1010	10.5	6.1	18.1	8.2	18.0	10.5	20.8	19.7	17.5	17.7	11.0	22.6	32.6	32.4	4.8	2
RP5564 PTB 1-4-1-2	RP Bio226 x IRGC 71598 x MTU 1010	8.4	6.9	15.8	34.2	20.7	12.8	20.0	18.7	19.0	12.7	9.3	0.0	39.4	31.5	9.1	7
RP5564 PTB 1-4-2	RP Bio226 x IRGC 71598 x MTU 1010	10.0	4.3	17.8	9.7	34.2	12.5	22.4	19.4	19.2	8.5	17.6	24.7	33.4	26.5	8.5	7
NPK 24	Swarna/ O nivara BIL	17.3	15.7	16.2	9.0	15.6	10.9	18.3	27.2	19.9	8.5	16.3	14.9	40.5	35.9	8.4	7
BPT 3113	BPT 2270/ NLR 145	11.6	8.9	21.0	12.2	15.0	10.5	19.0	41.3	20.7	9.8	14.9	9.6	35.1	38.5	14.8	9
BPT 3130	BPT 5204/ MTU 1075	15.2	4.9	19.1	8.7	15.0	12.7	20.6	25.1	20.9	9.8	12.5	13.8	33.2	42.2	8.7	9
RP5564 PTB 2-4-2-1-2	RP Bio226 x IRGC 71598 x MTU 1010	12.5	6.0	15.7	10.3	33.3	13.3	20.6	37.6	13.9	7.3	16.0	16.3	19.5	31.4	8.0	9
RP5564 PTB 1-1-1-4	RP Bio226 x IRGC 71598 x MTU 1010	14.7	10.3	16.8	7.6	34.2	11.1	18.7	25.3	21.8	10.0	8.6	8.1	45.6	44.7	12.7	9
NPK 46	Swarna/ O nivara BIL	21.9	8.9	18.8	8.8 8	27.1	10.6	19.8	31.9	17.8	7.9	14.5	13.7	38.3	54.5	15.8	9
BPT 3135	BPT 5204/ MTU 1001	14.1	6.1	22.7	9.2	35.1	11.3	23.7	36.7	21.3	9.6	18.8	10.7	31.8	46.3	8.5	5
BPT 3182	BPT 2231/MTU 1075	12.3	5.3	21.5	9.2	25.1	12.3	22.7	19.9	19.1	9.6	10.3	16.5	33.5	41.4	8.2	2
BPT 3085	BPT 5204/MTU 1075	18.6	7.7	17.8	9.7	37.2	15.1	20.7	20.2	16.2	9.2	13.7	11.1	19.4	46.7	10.4	2
NWGR 16032	Gurjari/ NWGR 3015	12.1	15.3	20.0	<u>9.</u> 3	33.8	12.2	21.5	33.6	18.7	8.0	26.7	8.6	35.8	44.0	9.3	2
RP5564 PTB 1-3	RP Bio226 x IRGC 71598 x MTU 1010	11.0	6.5	20.7	8.9	26.0	12.5	19.5	24.7	18.4	8.2	13.2	26.0	29.1	31.7	9.9	2
BPT 3239	BPT 5204/ MTU 1075	16.2	3.0	23.0	6.8	26.4	13.0	25.5	40.2	28.3	9.2	12.5	12.4	33.8	45.9	10.0	4
BPT 3068	NLR 34449/ Ramappa	19.4	7.5	22.8	9.4	25.5	12.0	23.2	20.5	20.4	11.2	12.7	0.0	19.7	49.8	10.7	4
BPT 3192	BPT 5204/ MTU 1075	15.4	11.9	22.3	9.6	16.0	12.5	21.2	38.9	17.7	8.7	16.1	12.4	36.5	43.8	8.4	4
GR-11	Local check												38.4	42.6			
TN 1	Susceptible check	29.2	14.3	20.0	7.0	37.4	16.1	21.4	40.4	30.7	7.8	18.0	37.9	43.3	52.4	14.4	
Minimum damage		8.4	2.7	15.7	6.8	15.0	10.5	18.3	18.7	13.9	7.3	8.5	0.0	19.4	25.5	4.8	
Maximum damage		21.9	15.7	23.0	34.2	37.2	15.1	25.5	41.3	28.3	17.7	26.7	38.4	45.6	54.5	15.8	
Average damage in trial		13.7	7.6	19.3	10.3	25.5	12.2	21.0	29.0	19.2	9.5	13.6	13.4	31.9	39.5	9.5	
Promising level		10	10	20	10	20	12	20	20	15	10	10	10	20	25	10	
Number Promising		4	19	16	21	8	10	6	5	1	21	5	10	7	-	19	
Total entries tested		25	25	25	25	25	25	25	25	25	25	25	25	25	25	25	

Table 2.1.3 Performance of promising entries against leaf folder in LFST, Kharif 2023

Data from Arundhutinagar, Jagdalpur, Karaikal and Titabar was not included in the analysis due to low pest pressure

Field evaluation of 25 entries replicated thrice at 18 locations in **Leaf Folder Screening Trial (LFST)** during Kharif 2023 revealed that 23 entries were promising in 4-9 tests out of 15 valid field tests. In the second year of testing, RP5564 PTB 2-4-2-1-1 was found promising in 9 of the 15 valid tests while three entries, viz., RP5564 PTB 1-4-1, RP5564 PTB 2-4-1-5 and RP5564 PTB 1-1-1-2 were promising in 8 out of 15 valid field tests. Six entries were found promising in 7 tests, five entries promising in 6 tests, five entries in 5 tests and three entries in 4 tests out of 15 valid field tests.

iv Stem borer screening trial (SBST)

To identify novel sources of tolerance to stem borer damage in rice, Stem borer Screening trial (SBST) was conducted during kharif 2023 with 45 entries which included 30 nominations from IIRR (BPT mutants and its derivatives, ILs derived from O. nivara; O. rufipogon and O. glaberrima); 8 nominations from IIRR-PTB; two from Nawagam along with the checks, PB1, TN1, W 1263, Sasyasree and TKM6. Of these, 25 entries were under retesting. The entries were evaluated at 17 locations. For effective screening, two staggered sowings were taken up at NVS, PNT, CHN, and RNR-IIRR. At IIRR, infestation was supplemented through pinning of yellow stem borer egg masses. At each location, observations were recorded on dead heart damage in vegetative phase and white ear damage in reproductive phase, grain yield in the infested plant and the larval survival in the stubbles at harvest. In all the locations tested, damage by yellow stem borer was observed with few exceptions. At Ghaghraghat, pink stem borer damage was observed. Traces of pink stem borer were observed in stubbles at ARS, Rajendranagar farm. At Titabar, both vellow stem borer and white stem borer were recorded. The results of the evaluation from the valid tests are discussed below.

Dead heart damage: The dead heart damage in the trial varied from 0.0 to 35.8% with an average damage of 15.3% DH across 11 locations in 12 valid tests. Evaluation of entries for dead heart damage at 30, 50 DAT and at 71 DAT in two staggered sowings helped in identification of two entries-RP5977-Bio-SB-5-(SM74) and RP6738-42-16-2-2 as promising in 2 of the 12 valid tests with ≤5% DH (DS-1.0).

White ear damage: The white ear damage across 7 locations in 8 valid tests varied from 0.0 to 86.0% with a mean of 16.5% WE in the trial. Evaluation of entries identified, RP5564 PTB 1-4-2 as promising in 4 of the 8 valid tests in second year of testing. RP4919-NSR40, RP5564 PTB 1-3*, RP5564 PTB 1-1-1-2*, RP5977-Bio-SB-10 (SM48), RP6738-42-16-3 were promising in 2 tests each with ≤5% WE (DS-1.0).

The larval survival per entry across 9 locations in 11 tests varied from 0.8 to 1.3 larvae/hill in the stubbles with a mean of 0.3 larvae/hill.

Grain yield: RP5564 PTB 2-4-2-1-1*, NWGR-19007 and RP5977-Bio-SB-4 (SM72) were promising in 4 of the 6 valid tests with grain yield of ≥15g/hill despite white ear damage. RP4919-NSR40, RP-6112-SM-92-R-293-1-1-3-3*, RP-6112-SM-92-R-

293-2-2-4-4(a)*, RP2068-18-3-5, RP5564 PTB 2-4-2-1-2*, RP6420-C10-21-8, BK 49-76* were promising in 3 of the 6 valid tests with grain yield of ≥15g/hill.

Overall reaction: Evaluation of entries in 20 valid field tests for dead hearts and white ear damage identified 8 entries as promising in 3 to 5 of the 20 tests in terms of low dead heart (\leq 5% DH) and white ear damage (\leq 5% WE). They were also promising in 1 to 4 tests of the 6 valid tests with higher grain yield (\geq 15.0 g/hill) under infested conditions in reproductive phase suggesting that recovery resistance and tolerance could be the mechanisms in these entries as they have good grain yield despite damage. The mean no. of larvae in the stubbles in these entries varied from 0.29-1.10/hill). RP5564 PTB 2-4-2-1-2*, RP5564 PTB 1-4-2*, RP5564 PTB 1-3*, RP5564 PTB 1-4-1-2* and RP5564 PTB 2-4-2-1-1* were under retesting **(Table 2.1.4).**

		SBDH	SBWE	SB NPT	GY	Overall NPT	larvae/hill
SBST No	Designation	12	8	12+8=20	6	DH+WE+GY 26	
42	RP6738-42-16-2-2	2	3	5	1	6	0.61
25	RP5564 PTB 2-4-2-1-2*	1	3	4	3	7	0.29
27	RP5564 PTB 1-4-2*	0	4	4	2	6	0.62
21	RP5564 PTB 1-3*	1	2	3	1	4	0.48
24	RP5564 PTB 1-4-1-2*	0	3	3	1	4	0.55
28	RP5564 PTB 2-4-2-1-1*	0	3	3	4	7	0.58
37	RP5977-Bio-SB-10 (SM48)	1	2	3	2	5	0.43
39	RP5977-Bio-SB-5-(SM74)	2	1	3	2	5	1.10

Table 2.1.4 Reaction of most promising cultures to stem borer in SBST, kharif2023.

*Entry under retesting. Data on dead heart damage from ABP, CHN, LDN, RNR, TTB; white ear damage from ADT, PTB, ABK, ARN, NVS ,RNR, CHN, MND and NLR was not considered for analysis due to low pest pressure.

Valid data considered for analysis

Parameters	Locatio	ons/Tests											Total Tests
Dead heart damage	IIRR*	ADT	MNC	MND	NLR	NVS2	PNT 1	PNT 2	РТВ	PSA	GGT	NLR	12
White head damage	IIRR*	PNT-1	PNT-2	MNC	PSA	LDN	RPR	GGT					8
Grain yield (g/hill)	IIRR	PNT-1	PNT-2	MNC	RPR	LDN							6

• Infestation augmented; 1 & 2 suggest different sowing dates.

V Multiple Resistance Screening Trial (MRST)

This trial was constituted with a view to identify the reaction of entries that were found promising in pest specific trials to other pests and also to evaluate the reaction of advanced breeding lines to insect pests. The trial was constituted with 32 entries consisting of one line promoted from SBST trial, three entries each promoted from PHS and GMS trials, 2 nominations from IIRR Rajendranagar; one from MRRS, Nawagam; two N22 EMS mutants tolerant to heat, 7 wild rice introgression lines, 2 lines derived from BPT 5204 EMS mutants, four germplasm

lines from IIRR; along with five resistant and two susceptible checks. Of these, 15 entries were under retesting. The entries were evaluated against 13 insect pests at 27 locations. Some of the introgression lines possessing disease resistance have been included in this trial to evaluate their reaction to insect pests. The valid data pertaining to reaction of entries from various locations are discussed pest wise.

BPH: Entries were evaluated in five greenhouse tests at seedling stage and one field test against BPH. Field screening was augmented by releasing insects periodically to ensure population build – up at RNR. RP Bio 4918-230*, RP 5587-B-B-B-267*, RNR 37964 was RP 2068-18-3-5 and IBT-BPHM23 were promising in one of the 6 valid tests. The resistant check, PTB33 recorded a DS of ≤3.0 in 3 valid tests.

WBPH: RP Bio 5477-NH363 was the only entry which recorded a DS of 1.5 in greenhouse reaction at IIRR in the second year of testing but at CBT it had recorded a DS of 5.2. RNR 37971 was promising only at Ludhiana with a DS of \leq 3.0. At other locations, it was moderately susceptible.

Planthoppers: Only RP 2068-18-3-5 recorded a DS of ≤ 3.0 in 2 tests of the 3 valid tests.

Gall midge: Entries were evaluated in 5 field tests which identified one entry *viz.*, RP 6614-102-11-3-3-1-1(FBL 19101) as promising in 2 of the 5 valid tests with nil damage. The resistant check, W1263 recorded nil damage in one test.

Stem borer: Entries were evaluated against stem borer at vegetative phase for dead heart damage in 9 valid tests. RPBio4918- DB- NPK13, WGL 1062, Suraksha, RPGP-3000-179-3-9-1, RP-6112-SM-92-MS-M-R-279-3-6-2-10-5-8 recorded nil damage in one of the 9 valid tests. At reproductive phase, of the 9 valid tests with ≤5 % WE damage, RPBio4918- DB- NPK13, WGL 1062, RPGP-3000-179-3-9-1 were promising in 6 tests. RP 6461-248-1*, NND 2 and NND5 were promising in 2 tests each.

Foliage feeders: Incidence of leaf folder, and whorl maggot, were observed at various locations. None of the test entries were promising.

Overall reaction: Evaluation of 32 entries in 8 greenhouse and 38 field tests against 6 insect pests helped in identification of 6 test entries and 3 checks as promising in 4-8 tests against 2-3 insect pests with a PPR of 3.6-15.9 **(Table 2.1.5)**. Of these 5 entries viz., RPBio4918- DB- NPK13, WGL 1062, RP Bio 4918-230*, NND6 and RP 6461-248-1 were promising in second year of testing. RPGP-3000-179-3-9-1 was promising in first year of testing in 8 tests against PH and stem borer. The check lines Suraksha, RP 2068-18-3-5 and PTB 33 were promising in 4-8 tests against 3-4 pests with a PPR of 5.4-15.9.

5
ೆ
6
n
0
IT.
5
-
2
1.
0
\rightarrow
~
3
0
\sim
r
0
d
~
S
è
50
0
6
a
n
U
2
∇
2
2
Ξ
×
$\mathbf{\nabla}$
C'

Table 2	2.1.5 Performance of most	promising cultures aga	inst m	ajor inse	et pests	in MR	ST khai	if 2023						
				z	umber of P	romisi	ng tests ((TQU)				MR	_	
MRST	Designation	Cross combination	BPH	WBPH	+ Hda	GM	SBDH	SBWE	5	MM	Tests	Pests	РХТ	PPR
.01			9	ę	3 3	5	6	13	5	2	(1)	(<u>-)</u> 9	276	
19	RPGP-3000-179-3-9-1	MTU1121x Vijetha	0	0	.	0	-	9	0	0	8	с	24	8.7
4	RPBio4918- DB- NPK13*	Swarna / O. nivara	0	0	0	0	-	9	0	0	7	2	14	5.1
6	WGL 1062*	Gedongibetan/Kavya	0	0	0	0	-	9	0	0	7	2	14	5.1
-	RP Bio 4918-230*	(Swarna/O. nivara)	-	0	-	0	0	2	0	0	4	ę	12	4.3
31	NND6*	Land race	0	0	-	0	-	4	0	0	9	с	18	6.5
2	RP 6461-248-1*	(Swarna/O. nivara)	0	0	-	0	0	4	0	0	5	2	10	3.6
	Checks													
25	PTB 33	R. check	с С	2	0	0	-	5	0	0	11	4	44	15.9
15	RP 2068-18-3-5	R. check	-	0	2	0	0	2	0	0	5	с	15	5.4
10	Suraksha	Sasyasree/MR 1523	2	0	0	0	Ļ	2	0	0	5	3	15	5.4
entry unde	sr retesting: Per cent promising re	action (PPR) = (MRI of the test	t entrvX1	00)/Total	MRI.]

Valid reaction to insect pests considered for analysis in MRST, kharif 2023

Total tests	5	٢	3	3	5	6	12	2	5	2
						NVS	PNT			
						RPR	NWG			
						PNT	NVS			
 its						PSA	MSD			
ons/ Tes	LDN				SKL	CHP	LDN		PTB	
 Locati	PNT				JDP	CHN	CHP	MTU	NLR	
	DNM		LDN	PNT	MGL	MTU	CHN	MGL	NWG	
	CBT		CBT	GNV	PTB	ADT	SKL	RPR	MLN	JDP
	IIRR	RNR*	IIRR	MTU	GNV	MLN	IIRR *	PSA	CHT	CHN
Reaction	НЭ	FR	ЭH	FR	FR	FR			FR	FR
Insect pests	BPH	BPH	WBPH	Hdaw +Hga	GM	SBDH	CDIVIE	2DVVC	LF	WM

*Augmented Insect infestation

Data on BPH from PNT(FR), ADT: WGL; WBPH from PNR; GLH from JDP & RPR; GM from, ABP, CHP, NLR,RCI, TTB; SBDH from ABP, CHP, JDP, LDN, MSD ,MTU,NLR, NWG, PTB, RNR; SBWE from PTB, ADT, RCI, NLR, RNR, TTB, CHT; LF from ADT, GNV, JDP, RNR, RPR, TTB, WGL, MSD, NVS, CHN, BRH, ADT, LDN, NVS, GNV, PNT, PSA, RCI, WM from ADT, JDP, NLR, PTB & RNR & CW from BRH were not included due to low pest pressure.

vi. IIRR-National Screening Nurseries

IIRR-National Screening Nurseries (NSN) comprised of 4 trials -National Screening Nursery1 (NSN1), National Screening Nursery 2 (NSN2), National Screening Nursery-Hills (NSN hills) and National Hybrid Screening Nursery (NHSN). **IIRR-NSN1** was constituted with 442 entries (418 AVT entries along with 10 insect checks and 14 disease checks) and was evaluated at 21 locations. **IIRR-NSN 2** trial comprising of 653 entries (629 entries from IVT trials, 10 insect and 14 disease checks) was evaluated at 18 locations against 7 insect pests. **IIRR NSN-Hills** trial consisting of 96 entries (72hill entries + 10 insect check lines and 14 disease checks) was evaluated at 8 locations against 9 insect pests. **IIRR-NHSN** trial constituted with 130 entries (97 hybrids + 10 insect checks +23 disease checks) was evaluated at 14 locations against 8 insect pests. The valid reactions from the evaluations in each trial are discussed pest wise:

Brown planthopper:

IIRR-NSN1: IET Nos. 30233, 30261 and 29726 recorded a Damage Score (DS) of \leq 3.0 in 3 of the 5 tests in greenhouse evaluations. IET nos. 30240, 28523, 29738 and 30620 were promising at 2 locations. PTB-33 and RP 2068-18-3-5 were resistant at seedling stage in 2 and 3 tests respectively of the 5 tests with a DS of \leq 3.0.

IIRR-NSN2: Greenhouse evaluations were carried out at 5 locations. IET Nos 31552, 31665 recorded a DS of \leq 3.0 in 2 (IIRR & MND) of the 3 valid tests. At Coimbatore, both the entries recorded a DS of 5.0. IET 31505 was promising at both Ludhiana and Pantnagar (Zone 3).

IIRR-NSN hills: Entries were evaluated at seedling stage against BPH under greenhouse conditions at IIRR, CBT, LDN and PNT. The resistant check, PTB33 had a DS \leq 3.0 at IIRR, Ludhiana and Coimbatore. Vikramarya recorded a DS \leq 3.0 at Ludhiana and Coimbatore. IET Nos 31389, 31393, 31395, 31396, 31397, 31403, 31406, 31412 and RML -22 recorded a DS \leq 3.0 in greenhouse reaction only at IIRR. All the test entries were susceptible at Pantnagar when evaluated against brown planthopper under greenhouse conditions.

IIRR-NHSN: IET Nos 31444, 31495 were promising in two of the five valid tests at seedling stage with a DS of \leq 3.0. PTB 33 and RP 2068-18-3-5 were promising in 3 and 4 tests, respectively of the 5 valid tests against BPH in greenhouse reaction.

Whitebacked planthopper:

IIRR-NSN1: Entries were evaluated in greenhouse conditions against WBPH at both IIRR and Coimbatore. None of the test entries were observed to be promising for WBPH except MO1 at IIRR. At Coimbatore IET No 31128 was found promising with a DS \leq 3.0 but MO1 recorded DS of 5.0.

IIRR_NSN2: Entries were evaluated in greenhouse conditions at IIRR and CBT. All the entries were susceptible to WBPH except MO1 at IIRR. IET Nos. 31661, 31715 recorded DS of \leq 3.0 at Coimbatore where MO1 recorded a DS of 5.0. At IIRR MO1 recorded DS of 1.5.

IIRR-NSN hills: Entries were evaluated under greenhouse conditions at IIRR and CBT at seedling stage. MO1 recorded resistant reaction (DS \leq 3.0) at IIRR and DS 5.0 at Coimbatore. None of the entries were promising.

IIRR-NHSN: Entries were evaluated in greenhouse conditions against WBPH at both IIRR and Coimbatore. None of the test entries were observed to be promising for WBPH except MO1 at IIRR (DS 1.4) and CBT (DS 3.2).

Mixed population of Planthoppers:

IIRR-NSN1: CR Dhan 202 and PTB 33 were identified as promising in 2 tests at Gangavathi and Maruteru ($DS \le 3.0$) to mixed populations of planthoppers in the field at Maruteru and Gangavathi. The average infestation was 474 planthoppers/10 hills at 113 DAT at Gangavati. The ratio of BPH to WBPH was 1.5:1.0 at Gangavati and 9.0:1.0 at Maruteru.

IIRR-NSN2: All the entries were evaluated in field against a mixed population of BPH and WBPH at Gangavathi and Maruteru. The ratio of BPH to WBPH at Gangavati was 1.5: 1.0 at 103 DAT and 9.0:1.0 at Maruteru at 95 DAT. The average planthopper population was 494.7/10 hills at Gangavati. Evaluation of the entries at both the locations identified IET Nos 31515, 31619, 31682, 31710, 31742, 31946, 31872 as promising at both the locations with a DS \leq 3.0 and low populations (100nos/ 10 hills).

IIRR-NSN hills: Entries were evaluated at Pantnagar and Maruteru against the mixed populations of planthoppers under field conditions. The ratio of BPH to WBPH was 9.0:1.0 at Maruteru and 5.0:1.0 at Pantnagar. All the test entries were susceptible at Maruteru when evaluated against mixed population of BPH and WBPH under field conditions except for PTB which recorded a DS of 3.0.

IIRR-NHSN: None of the test entries were promising in field reaction at Maruteru against planthoppers except PTB33 (DS 3.0.)

GLH:

IIRR-NSN hills: Greenhouse reaction against GLH was reported from Coimbatore. IET 31393 had recorded a DS 3.0 in the evaluation.

Gall midge:

IIRR-NSN1:

Valid data pertaining to reaction of entries to rice gall midge was recorded from three locations in zone 5 (Ambikapur, Jagdalpur and Sakoli), one from zone 1 (Chiplima) and 2 from zone 7 (Warangal and Gangavati). IET No 31105 recorded

nil damage at Ambikapur, Jagdalpur and Sakoli of Zone 5. But IET 30685 and Naveen (RP) were promising only at Ambikapur and Jagdalpur only. At Chiplima (zone 1), 26 entries were promising. IET Nos 30660, 30841, 32057 recorded nil damage at Warangal in Zone 7 of the two locations tested. The resistant checks Kavya and Aganni were promising in 2 of 6 valid tests.

IIRR-NSN2: Valid reactions for gall midge damage were recorded from Chiplima, Jagdalpur and Gangavati. In field reaction at GNV, all the entries were susceptible. The average damage was 22.7% SS. IET Nos 31684, 32018 and Aganni recorded nil damage in 2 of the 3 valid tests.

IIRR- NHSN: None of the test entries were promising in a field test at PTB.

Stem borer (SB):

IIRR NSN1: Valid data for stem borer dead heart damage was recorded from 4 tests in 3 zones *viz.*, Zone 2 (Pantnagar), zone 3 (Chiplima and Pusa) and zone 5 (Raipur). IET Nos 31135 and 29690 were promising in Zone 2 with <10% dead heart damage. At Chiplima in zone 3, 20 entries had <5 % damage. IET nos 29741, 29822, 30622 and 30705 had nil damage at Raipur in zone 5. White ear damage was reported from Zone 2, 3, 5 and 7. IET Nos 29690, 30078, 32038, 30942, 29935, 29891, 30860, Pusa 44, 30831, 32065 recorded ≤ 5 % white ear damage in 3-4 valid tests of the 11 valid tests. However, the infestation levels should be corroborated with flowering data and pest incidence to ensure that there are no escapes.

IIRR NSN2: Valid data were reported from Pusa, Chiplima (zone 3) and Pantnagar (zone 2). IET Nos 31517, 31798, 31809, 31810 and 31811 recorded \leq 10% dead heart damage at Pantnagar. IET Nos, 31593, 31546, 31724, 31749, DRR Dhan 54, 31765, 31852, 31855, 31861, 31968, 31969 and 32014 recorded <5 % DH at Chiplima, but all these entries had < 20% at Pusa. IET Nos. 31509, 31628, 31677, 31690 were found promising for white ear damage (\leq 5% WE) in four out of the 6 valid tests.

IIRR NSN hills:

Dead heart damage: IET 31423 and Bhrigudhan had recorded <10% dead heart damage (DS <1.0) in field reaction at Pantnagar.

White ear damage: Valid data was obtained from 2 locations, MLN & PNT for stem borer white ear damage. IET 29654 and Swarnadhan had recorded <5% white ear damage (DS 1.0) in field reaction at both Pantnagar and Malan.

IIRR NHSN: IET Nos 31453, 31474, 31500 were promising in 2 of the 5 valid tests but all these recorded 18.5-22.4% DH damage at Pantnagar. In the field evaluation against SB white ear damage,19 entries were promising in 2 of the 8 valid tests with <5% WE damage. But these lines need to be further tested under greenhouse

conditions for validation of the reactions and to check that they are not escapes as it is more common in very short and long duration varieties.

Leaf folder:

IIRR-NSN1: Valid data for leaf folder damage was recorded from 5 locations in zone 3, 6 and 7. IET nos 30577 and 32041 recorded < 5 % DL in 2 of the 5 valid tests.

IIRR NSN2: Sixteen entries *viz.*, IET Nos 31663, 31701, 31820, Swarna (Positive Check), 31994, 31995, 32000, 32003, 31928, 30159 (R), 31936, 31941, 31964, 31872, 31876, Chittimuthyalu had < 5 % DL in one valid test at Kaul at 40 DAT. Average leaf folder damage was only 25.7% DL.

IIRR NHSN: Field evaluation of entries in 3 valid tests identified 14 entries with <5 % DL. But none of the entries were promising across the locations.

IIRR NSN Hills: Field evaluation against leaf folder damage was reported from Malan with an average damage of 15.03% DL and from Chatha with an average damage of 22.01 %DL. None of the entries had <10% DL.

Other pests

Gundhi bug

IIRR-NSN Hills: Incidence of Gundhi bug at Chatha was recorded with an average of 20.5% DG.

IIRR-NHSN: Two entries viz., HR12 and IET No 31439 were promising at Ghaghraghat with <7 % DG.

Grass hopper

IIRR NSN Hills: Grass hoppers (*Oxya nitidula, Hieroglyphus* spp. *Attractomorpha pscittacina* & Long-horned grasshopper) caused an average of 11.2 % leaf damage. Incidence of Rice skipper (*Paranara guttata*) at Khudwani was observed.

Case worm

IIRR-NSN 1: At Brahmavar, case worm damage was recorded at 45 DAT. The average damage in the trial was 14.1% DL. US 314 (Hybrid Check), IET nos. 29579 (R), 30653, 30771, 30933, 32063, 30180 (R) recorded <5 % DL.

Overall reaction

IIRR-NSN1: Evaluation of 442 entries at 19 locations in 35 valid tests (7 greenhouse and 28 field tests) against 6 insect pests identified eleven entries viz., IET nos 30841, 30233, 30261, 29726, 29891, 30176, 29690, 30660, 32073, 29935, 32056 as promising in 5- 8 tests of the 35 valid tests against two to four pests. RP2068-18-3-5 and PTB 33 were promising in 5 and 9 tests, respectively (Table 2.1.6).

IIRR-NSN2: Evaluation of 653 entries along with 24 checks in 23 valid tests (5 greenhouse and 18 field tests) against 5 insect pests identified, IET nos. 31628 and 31724 in 7 tests and IET Nos 31682, 31690 and 31710 in 6 tests as promising.

RP2068-18-3-5 was promising in 3 tests and PTB-33 as promising in 4 tests (Table 2.1.7).

IIRR- NSN *hills*: Entries were evaluated at 8 locations in 16 valid tests (6 greenhouse and 10 valid field tests) against 7 insect pests (Table 2.1.8). Three test entries *viz.*, IET 29654, 31393, 31395 along with Vikramarya, Swarnadhan, CO39 & ganni were promising in 2 tests against 1-3 pests. PTB 33 was promising in 4 tests against planthoppers out of the 16 valid tests (Table 2.1.8).

IIRR-NHSN: In this trial, 97 hybrids along with 33 checks were evaluated in 7 greenhouse and 19 field tests against 5 insect pests at 12 locations in 26 valid tests of the 14 locations where the trial was conducted. The results identified IET Nos. 31444, 31453 and 31474 as promising in 4 of the 26 valid tests. PTB33 was promising in 7 valid tests; and RP 2068-18-3-5 was promising in 4 tests of the 26 valid tests (Table 2.1.9).

It is pertinent to note that since the breeding lines in these nurseries were not specifically bred for insect resistance, the number of promising tests is very low in all the identified promising entries in the nurseries. So, these entries need to be further tested, verified and validated for one or two seasons under suitable pest pressure situations for use in pest resistance breeding programs. The nil damage recorded for white ear damage should be noted with caution as we need to confirm that there is sufficient pest pressure at booting phase of the crop and it is not an escape.

				•	Numbe	er of pi	romising	tests (NI	PT)				
Entry	IET	Designation	RPH	WBPH	BPH+	GM	SBDH	SBWE	IF	cw	Overall	Promising	No. of
No.	No.	Designation			WBPH		ODDIT	ODITE		••••	overall	against	insects
			5	2	2	6	4	11	4	1	35		
312	30841	R 2404-346-1- 164-1	1	0	1	3	0	2	1	0	8	BPH+PH+GM+ SBWE+LF	4
56	30233	WGL 1495	3	0	0	0	1	1	1	0	7	BPH + SBDH+ SBWE+LF	3
70	30261	RP 6317-RMS- S35-BC2F4-49- 25-12-18	3	0	1	0	0	2	0	0	6	BPH +PH+ WE	2
209	29726	PHI-21103	3	0	0	1	0	1	1	0	6	BPH +PH+ WE +LF	3
309	29891	MTU 1376	1	0	1	0	0	3	1	0	6	BPH+PH+SBWE + LF	3
6	30176	IIRRH 156 (Hybrid)	1	0	0	2	0	2	0	0	5	BPH+PH+ GM +SBWE	3
26	29690	UPLRH-180842	0	0	0	0	1	3	0	0	5	SBDH+SBWE	1
135	30660	KNM 13557	1	0	0	3	0	1	0	0	5	PH+GM+ WE	3
272	32073	RP 6765-RAF 999-41	1	0	1	0	0	2	1	0	5	PH + SBWE	2
307	29935	MTU 1377	0	0	1	1	0	3	0	0	5	PH+GM+ WE	3
340	32056	RP 6751-RMS- 1-13-34-42	0	0	1	1	0	2	1	0	5	BPH+GM +SBWE+LF	4
	Checks												
437	PTB 33		2	0	2	2	0	3	0	0	9	PH+LF+GM	2
436	MO 1		0	1	0	2	0	1	1	0	5	WBPH+GM +SBWE + LF	4
439	RP 2068	8-18-03-05	3	0	0	0	0	1	1	0	5	PH+LF	2

Table: 2.1.6 Performance of most promising cultures against insect pests in NSN 1 Kharif 2023

Data from WGL, NVS, PNT (FR), WGL for BPH; PNT, WGL for WBPH; MNC for GM; ABP,WGL, RNR, JDP, SKL, MSD, MNC, LDN, NVS, NWG, LDN, for SBDH; RNR, NVS, TTB, for SBWE; WGL, GVT, MSD, JDP, BRH, TTB for LF; RNR & JDP for WM - not considered for analysis due to low pest pressure.

	Valid	NSN1	data	considered	for	analys	sis	, kharif	2023
--	-------	------	------	------------	-----	--------	-----	----------	------

Insect pests	React ion					Locati	ions/Tes	ts					Total tests
BPH	GH	IIRR	LDN	CBT	MND	PNT							5
WBPH	GH	IIRR	CBT										2
PH	FR	MTU	GNV										2
GM		ABP	JDP	SKL	CHP	WGL	GNV						6
SBDH	FR	PNT	CHP	PSA	RPR								4
SBWE	FR	ABP	RPR	SKL	NWG	PSA	MSD	CHP	PNT	GNV	WGL	MNC	11
LF	FR	PSA	NVS	NWG	BRH								4
CW	FR	BRH											1
											Total		35

No. of promising tests														
Entry No.	IET No	BF	Η	WBPH	F	РН		GM		SBDH		SBWE		Overall
		5		2		3		3		3		6		23
140	31628	1		0		2		0		0		4		7
243	31724	1		0		2		0		1		3		7
197	31682	1		0		3		1		0		1		6
205	31690	1		0		0		1		0		4		6
226	31710	1		0		3		0		0		2		6
	Checks													
648	PTB 33	2		1		1		0		0		1		4
650	RP 2068-18-3-5	2		1		0		0		0		0		3

Table 2.1.7 Performance of most promising cultures against insect pests in IIRR- NSN2, kharif 2023

PH- Mixed population of BPH & WBPH; Data from JDP, NVS, PNT(FR) for BPH; PNT (FR for WBPH; MNC & ADT for GM; NVS, GNV for SBDH; GNV for SBWE; NVS, GNV, CHP, JDP for LF; CHN, ADT, JDP for WM; GB from GGT - not considered for analysis due to low pest pressure.

Valid NSN 2 data considered for analysis , kharif 2023

Insect pests	Reaction			Total			
BPH	GH	IIRR	CBT	MND	LDN	PNT	5
WBPH	GH	IIRR	CBT				2
PH	FR	MTU	GNV	GNV			3
GM	FR	CHP	JDP	GNV			3
SBDH	FR	PSA	CHP	PNT			3
SBWE	FR	PSA	CHN	CHP	GGT	MNC	6
LF	FR	KUL					1
						Total	23

Ratio of BPH: WBPH

GNV	at 60 to 90 DAT In Field	1.5 BPH:1.0 WBPH
MTU	Field	9.0 BPH: 1.0 WBPH

Table 2.1.8 Performance of most promising cultures to insect pests in NSN Hills, Kharif 2023

Ente			IIRR	CBT	LDN	PNT	BPH	IIRR	CBT	WBPH	MTU	PNT	PH	CBT	GLH	PNT	SBDH	MLN	PNT	SBWE	MLN	CHT	LF	CHT	GB	KDW	Gr. H	Total
	IET No.	Designation	BPH	BPH	BPH	BPH	NPT	WBPH	WBPH	NPT	PH	PH	NPT	GLH	NPT	SBDH	NPT	SBDH/SBWE	SBWE	NPT	LF	LF	NPT	GB	NPT	Gr.h	NPT	NPT
NŲ.			GH	GH	GH	GH	4	GH	GH	2	93DT	74DT	2	GH	1	50DT	1	85DT	116DT	2	85DT	79DT	2	57DT	1	45DT	1	16
1	29654	VL 32605	8.1	5.6	8.4	9.0	0	9.0	6.2	0	GF	213	0	5.6	0	35.6	0	0.0	2.8	2	31.1	16.4	0	DNF	0	12.1	0	2
27	31393	VL 32942	7.3	3.0	8.4	9.0	1	9.0	4.4	0	GF	264	0	3.0	1	21.8	0	25.0	23.5	0	11.7	14.7	0	10.0	0	12.5	0	2
29	31395	RCPL 1-448	2.7	9.0	8.7	9.0	1	9.0	6.0	0	9.00	211	0	9.0	0	36.6	0	0.0	18.5	1	26.7	14.7	0	50.0	0	13.7	0	2
77	Vikramarya		6.8	3.0	3.0	6.8	2	9.0	5.6	0	GF	200	0	4.0	0	19.3	0	7.7	23.7	0	13.8	13.8	0	NF	0	9.3	0	2
82	Swarnadhan		7.2	5.6	8.4	7.0	0	9.0	5.0	0	9.00	259	0	5.2	0	28.2	0	0.0	0.0	2	18.2	16.2	0	10.0	0	8.1	0	2
85	CO-39		8.6	9.0	7.6	6.9	0	9.0	7.0	0	9.00	95	1	8.8	0	26.1	0	0.0	25.0	1	24.0	18.5	0	10.0	0	8.8	0	2
	Checks																											
88	Aganni		6.8	2.7	8.4	8.8	1	8.1	5.2	0	9.00	210	0	5.6	0	15.8	0	20.0	0.0	1	20.0	16.2	0	NF	0	10.3	0	2
91	PTB 33		1.7	2.6	3.0	9.0	3	4.9	5.3	0	3.00	221	1	5.2	0	17.7	0	18.2	35.8	0	14.5	14.7	0	NF	0	9.6	0	4
Total	Tested		95	94	94	96		95	94		74	96		94		96		92	96		92	96		66		94		
Max.	damage in the	e trial	9.0	9.0	8.7	9.0		9.0	9.0		9.0	354.0		9.0		41.7		28.6	87.8		32.5	22.9		60.0		15.2		
Min.c	amage in the	trial	1.7	2.6	3.0	4.8		1.8	4.0		3.0	35.0		3.0		8.8		0.0	0.0		11.7	10.5		8.0		7.8		
Ave. Damage in the trial		trial	7.2	7.0	7.6	7.5		8.4	6.7		8.9	182.5		7.1		23.4		14.2	19.0		22.0	15.0		20.5		11.2		
Promising level			3	3	3	3		3	3		3	100		3		10		5	5		10	10		7		5		
No . I	No . promising entries		9	4	3	0		1	0		1	5		1		2		12	6		0	0		0		0		

Insect Pests	Reaction		Promising tests							
BPH	GH	IIRR	LDN	CBT	PNT	4				
WBPH	GH	IIRR	CBT			2				
Mixed population of BPH +WBPH	FR	MTU	PNT			2				
GLH	GH	CBT				1				
SBDH	FR	PNT				1				
SBWE	FR	PNT	MLN			2				
LF	FR	CHT	MLN			2				
GB	FR	CHT				1				
GrH	FR	KDW				1				
Total tests	FR					16				

Valid data considered for analysis, NSN Hills, kharif 2023

Valid insect pest reaction considered for analysis in NHSN, kharif 2023

Insect pest	Reaction				Locat	ions				Total
BPH	GH	IIRR	CBT	MND	LDN	PNT				5
WBPH	GH	IIRR	CBT							2
GM	FR	PTB								1
PH	FR	MTU								1
SBDH	FR	PNT	CHN	GGT	NWG	RPR				5
SBWE	FR	PTB	MNC	RPR	CHN	GGT	LDN	PNT	NWG	8
LF	FR	NWG	PTB	GGT						3
GB	FR	GGT								1
										26

Field reaction of BPH & WBPH from PNT; GM from MNC; SBDH from MNC, LDN, RNR, PTB; SBWE from RNR; LF damage from CHN, RNR, RPR; WM damage from PTB, RNR, CHN, RPR were not considered due to low pest pressure.

- Entomology
Vol.
2023,
Report
Progress
Annual
ICAR-IIRR

		SBDH	NPT	5		0	7	7		-	0	0							
	Zone V	RPR	58DT	SBDH	HD%	6.2	0.0	28.8		7.5	13.6	33.9	129	257.1	0.0	13.9	15.7	0	16
	Zone V1	NWG	45DT	SBDH	HD%	6.1	13.5	0.0		0.0	NT	NT	121	47.8	0.0	12.2	17.9	0	21
	Zone-	GGT	74DS	SBDH	HO%	13.8	0.0	7.8		12.1	12.5	22.6	130	22.6	0.0	10.9	10.0	0	4
	Zone-	CHN	50DT	SBDH	HD%	10.3	1.7	0.0		18.8	NT	NT	122	24.2	0.0	10.2	19.7	0	4
	Zone II	PNT	53DT	SBDH	HD%	26.9	18.5	20.4		20.4	25.2	33.9	127	53.2	12.9	25.1	24.5	10	0
		GM	NPT	Ļ		0	0	0		0	0	0							
	Zone VII	PTB	GMB5	30DT	% DP	33.3	47.6	38.1		33.3	9.3	14.3	130	47.6	4.8	35.0	26.1	0	0
S		Н	NPT	-		0	0	0		0	٢	0							
	Zone VII	MTU	hddh htd	1		6	6	6		6	3	6	125	0.6	3.0	8.8	6.8	3	Ļ
JN, KII		WBPH	NPT	2		0	0	0		0	0	0							
	Zone VII	CBT	ВH	WBPH	DS	6.4	6.0	6.8		5.6	6.0	5.4	127	0.6	3.2	7.0	6.4	3	0
isect pe	Zone VII	IIRR	В	WBPH	DS	9.0	6.1	8.5		7.4	4.2	6.1	129	9.0	1.4	8.2	6.6	ę	Ţ
		BPH	NPT	5		2	0	0		1	3	4							
ures aga	Zone	PNT	ВH	ВРН	SQ	8.8	8.9	8.9		0.6	0.6	9.0	127	0.6	4.9	8.1	5.5	3	0
ing curu	Zone	LDN	В	BPH	DS	ВN	ВN	ВN		3.0	3.0	3.0	51	0.6	3.0	7.3	NT	e	8
t promis	Zone VII	MND	В	BPH	DS	5.0	5.0	5.0		5.0	3.0	3.0	130	9.0	3.0	6.7	5.3	с	6
the mos	Zone VII	CBT	GН	BPH	DS	3.0	5.2	9.0		5.2	4.0	3.0	129	0.6	3.0	7.3	6.2	3	3
lance or	Zone VII	IIRR	ВH	ВРН	DS	3.0	4.1	7.5		9.0	1.4	1.9	129	0.6	1.4	7.0	6.14	3	5
able 2.1.9. Periorn			o. IET No.			6 31444	31453	1 31474	Checks	9 HR-12	25 PTB 33	27 RP 2068-18-03- 05	otal Tested	lax. damage in the ial	lin. damage in the ial	verage damage in e trial	amage in TN1	romising level	o. of promiisng ntries
-			Ž			-	e	~		2	-	1,	Ĕ	Ξï	Ξï	₽Þ	õ	٦	l Z P

sete in NHCN Lharif 2022 1 1 1 nioi m 77 30 Table 2.1 0. Darf

	OVERALL		NPT	26		4	4	4		7	9	5							
		GB	NPT	1		0	0	0		-	0	0							
	Zone-	GGT	109DT	GB	9 0 %	11.3	16.1	10.1		7.0	10.1	7.8	130	17.0	6.9	11.0	12.5	L	2
		Ч	NPT	8		0	0	١		1	0	0							
	Zone-	GGT	74DT	Ľ	%DL	6.0	10.6	9.8		8.3	12.4	10.7	130	14.2	4.8	10.0	9.5	5	~
	Zone VII	PTB	75DT	IJ	%DL	34.2	28.1	13.7		18.9	10.8	18.4	130	45.6	4.4	20.4	19.7	5	Ļ
777	Zone IV	NWG	45DT	Ľ	%DL	6.0	25.7	4.3		3.6	NT	NT	121	38.5	1.3	18.0	17.0	5	12
V, NIMI		SBWE	NPT	8		2	2	1		3	2	1							
	Zone IV	NWG	Pr.h	SBWE	%WE	4.2	22.0	21.7		23.1	NT	NT	121	37.0	2.0	23.5	27.2	5	3
יו מכסוס	Zone II	PNT	Pr. H	SBWE	%WE	33.9	26.8	17.6		3.3	34.1	15.0	127	100.0	3.3	40.0	43.5	5	1
סר וווספר	Zone II	LDN	100DT	SBWE	%WE	10.9	8.7	8.3		3.8	5.2	5.0	107	16.3	1.8	7.4	7.5	0	0
ы ауаш	Zone-	GGT	109DS	SBWE	%WE	12.7	0.0	16.1		18.5	18.5	20.0	130	26.9	0.0	15.5	15.6	5	6
ן כעונעו כ	Zone- III	CHN	Pr.h	SBWE	%WE	15.9	0.0	15.7		0.0	0.0	9.5	130	19.3	0.0	8.5	10.6	5	24
שוווסוווט	Zone V	RPR	78DT	SBWE	%WE	17.3	13.2	35.1		30.9	0.0	2.1	129	83.9	0.0	22.3	31.4	5	8
illuot pi	Zone VII	MNC	110DT	SBWE	%WE	0.0	19.7	0.0		5.6	18.4	4.8	130	30.4	0.0	9.7	19.4	0	29
	Zone VII	PTB	SBWE	75DT	%WE	32.6	WBD	WBD		0.0	4.4	WBD	37	33.3	0.0	7.8	6.9	0	12
016 2.1.J. LEIIUIIII			IET No.			31444	31453	31474	Checks	HR-12	PTB 33	RP 2068-18-03-05	al Tested	 damage in the trial 	. damage in the trial	rage damage in the trial	nage in TN1	mising level	of promiisng entries
			ш	NO.		16	39	71		29	125	127	Tota	Max	Min.	Ave	Dan	Pror	No.

Table 2.1.9. Performance of the most promising cultures against insect pests in NHSN kharif 2023

WBD- wild boar damage; area, - Dead heart damage at Pantnagar
b. NRRI-National Screening Nurseries

AT NRRI Cuttack, National Screening Nurseries (NSN) consisting of two trials *viz.*, National Screening Nursery-1 (NSN1) and National Screening Nursery-2 (NSN2) were constituted this year with entries from Early Direct Seeded, Rainfed Shallow Lowland, Semi Deep Water, Deepwater. NSN1 trial constituted with 87 entries (75 AVT entries along with 12 insect checks) was evaluated at 23 locations. NSN2 trial comprised of 172 entries (160 IVT entries plus 12 insect checks) was evaluated at 175 locations. The valid data of the reaction of entries in the above said trials are presented insect pest wise:

Brown Planthopper:

NRRI-NSN1: The following IET lines *viz.*, 31201, 31215, 31192, 312074, 32130, 32131, 31279, 31203 were found promising in 1 test in greenhouse reaction of the 3 valid tests against PTB-33 and CR Dhan 317 exhibited resistant reaction (damage score \leq 3 on SES scale) in 3 tests.

NRRI-NSN2: IET32113 were promising in 2 locations out of the 3 tests. CR Dhan 317 and CR Dhan 805 exhibited resistant reactions in 3 and 2 tests, respectively.

White-backed Planthopper:

NRRI-NSN1: None of the entries were found promising at CBT except the resistant check PTB-33 and CR Dhan 317.

NRRI-NSN2: None of the entries were found promising at CBT. CR Dhan 317 exhibited resistant reaction.

Mixed population of Planthoppers:

NRRI-NSN2: None of the entries were found promising in field evaluation including the resistant check PTB-33 and RP2068-18-3-5 when tested in the field reaction at Pantnagar. The average population in the trial was 67 No/10 hills at Pant Nagar.

Gall Midge:

NRRI-NSN1: IET32101 recorded nil damage against gall midge at Titabar and Warangal locations. IET29038 and IET31202 recorded nil damage at Sakoli and Titabar. The resistant check Aganni showed nil damage in three locations out of 4 valid tests.

NRRI-NSN2: IET32134 recorded nil damage against gall midge at Chiplima. Following IET Nos. *viz.*,32232, 32190, 32192, 32194, 32195, 32083, 32087, 32095, 32099, 32101, 32107, 32114, 32119, 32143, 32157 recorded nil damage against gall midge at Moncompu. Aganni recorded nil damage at both the test locations.

Stem borer:

NRRI-NSN1: IET31202 was promising against stem borer during vegetative and reproductive phases in 3 out of the 8 tests.

NRRI-NSN2: IET32159 had nil white ear damage at Chiplima during reproductive phase; however, it requires a glass house study for confirmation.

Leaf folder:

NRRI-NSN1: Anjali was promising against leaf folder in Warangal and Rajendranagar locations. The Check W1263 showed resistant reaction in both locations.

NRRI-NSN2: None of the entries were found promising in field evaluation including the resistant check W1263 at Kaul, where the average leaf folder damage was at 65%.

Gundhi Bug:

NRRI-NSN1: In the field evaluation at Masodha, GB incidence at 70 DAT was recorded and the average damage in the trial was 13.0% DL.

Whorl Maggot:

NRRI-NSN2: In the filed evaluation at Chinsura and Aduthurai, WM incidence at 30 and 50 DAT, respectively was recorded and the average damage in the trial was 7.0 and 8.0% DL, respectively.

Note: Since all these breeding lines have not been specifically developed for insect pest resistance; all these identified promising entries need to be further tested and validated for their resistance against individual pest in specific screening program under suitable pest pressure for further use in the resistant breeding program.

Overall reaction:

NRRI-NSN1: Evaluation of 87 entries in NSN-1 in 4 greenhouse and 17 field tests against 7 insect pests in 21 valid tests helped in identification of 3 entries as promising in 4 tests against 3 insect pest damages **(Table 2.6.2.1)**. Resistant checks PTB 33 and RP 2068-18-3-5 were resistant to BPH in the valid tests. Aganni and W1263 were promising against gall midge and leaf folder, respectively.

NRRI- NSN2: Evaluation of 172 entries in NSN-2 in 4 greenhouse and 9 field tests against 5 insect pests in 13 valid tests helped in identification of 4 entries as promising in 2- 3 tests against 2-3 insect pest damages **(Table 2.6.2.2)**. Resistant checks CR Dhan 317 and CR Dhan 805 were resistant to BPH in the valid tests. Aganni were promising against gall midge.

0				Nu	mber of	promising te	ests (NPT)		
31. No	IET NO.	BPH	WBPH	GM	LF	SBDH	SBWE	GB	Overall NPT
NO.		3	1	4	4	3	5	1	21
1	31201	1	0	2	1	0	0	0	4
2	29038	0	0	1	1	0	2	0	4
3	31202	0	0	1	0	2	1	0	4
Resis	tant checks								
PTB-3	33	3	1	1	1	0	1	0	7
CR D	han 317	3	1	0	0	0	0	0	4
RP20	68-18-3-5	2	1	0	0	0	0	0	3
Aganı	ni	0	0	3	0	0	0	0	3
W-12	63	0	0	0	2	1	0	0	3

Table 2.6.2.1 Performance of most promising culture against insect pests in NRRI-NSN1, Kharif 2023

*PNT, WGL for BPH&WBPH; AMB, MNC for GM; NAV, TBR, RPR, MSD, JDL for LF; JDL for GLH; NVA, CHP, TBR, WNGL, RNR, PUSA, MSD, JDL for SBDH &SBWE not considered for analysis due to low insect pest pressure

Locations Insect pest BPH CBT MND LDN --WBPH CBT _ _ -Gall midge CHP TTB WGL SKL -Leaf folder NWG PSA WGL RNR SBDH RPR MNC PNT _ _ MNC SBWE RPR NWG PNT SKL Gundhi Bug MSD _

Valid NSN1 data from locations considered for analysis

Table 2.6.2.2 Performance of most promising culture against insect pests in NRRI-NSN2, Kharif 2023

				Number	of promising f	tests (NPT)		
SI. No	IET No.	BPH	WBPH	GM	SBDH	SBWE	WM	Overall NPT
		3	1	2	2	4	1	13
1	32095	1	0	1	0	1	0	3
2	32114	1	0	1	0	1	0	3
3	32113	2	0	0	0	0	0	2
4	32159	1	0	0	0	1	0	2
Resistar	nt checks							
CR Dha	n 317	3	1	0	0	0	0	4
CR Dha	n 805	2	0	0	0	0	0	2
RP2068	-18-3-5	1	0	0	0	0	0	1
Aganni		0	0	2	0	0	0	2
W-1263		0	0	1	1	0	0	2

*JDL, PNT for BPH; PNT for WBPH; JDP for GM; ADT, JDP, NVS, GGT, CHN, MNC for SBDH; ADT, JDL, GGT, NVS for SBWE; ADT, JDP, NVS, GGT for LF not considered for analysis due to low insect pest pressure

Valid NSN2 data from locations considered for analysis

Insect pest	Locations			
BPH	CBT	MND	LDN	-
WBPH	CBT	-	-	-
Gall midge	CHP	MNC	-	-
SBDH	CHP	-	PNT	
SBWE	CHP	MNC	PNT	CNH
WM	ADT			

2.2. INSECT BIOTYPE STUDIES

Variation in the response of host plant/gene differentials to different pest Populations in endemic areas are monitored for two major insect pests *viz.*, planthoppers and gall midge through Insect biotype studies comprising of four trials a) Planthopper Special Screening trial (PHSS) b) Gall midge biotype monitoring trial (GMBT) c) Planthopper population Monitoring trial (PHPM) and d). Gall midge population monitoring trial (GMPM). The results of the observed virulence pattern of trials are discussed below:

a) Planthopper Special Screening Trial (PHSS): A set of 17 primary sources of BPH resistance with some sources having known resistance gene(s) was evaluated at 13 locations viz., IIRR, Aduthurai, Coimbatore, Cuttack, Gangavathi, Ludhiana, Mandya, Maruteru, New Delhi, Pantnagar, Raipur, Rajendranagar and Warangal in 15 tests in the greenhouse in Standard Seedbox Screening Test (SSST) with 1 to 4 replications. At IIRR and Coimbatore, the sources were screened for both brown planthopper and whitebacked planthopper reaction. The special screening tests such as days to wilt to know the tolerance mechanism, feeding preference test by measuring honeydew excretion and nymphal survival were conducted at Maruteru and Pantnagar. Based on SSST results presented in (Table 2.2.1), it is observed that two gene differentials *viz.*, PTB 33 (with *bph2+Bph3+Bph32*+unknown factors) and RP 2068-18-3-5 (with Bph33(t) gene) were promising in 13 and 10 tests respectively out of 15 tests at 13 locations. Swarnalatha with Bph6 gene performed better at 9 locations while T12 (with bph7 gene) performed better in 5 locations. Babawee with bph 4 gene and Pokkali with bph9 gene performed better at 4 locations each. ARC 10550 with bph5 gene showed low damage at 3 locations. Three gene differentials viz., Rathu Heenati (with Bph3+Bph17 genes), IR-65482-7-2-216-1-2-B with Bph18(t)) gene, MUTNS 1 with unknown genetics showed promising reaction at 2 locations each. Five gene differentials viz., ASD7 with bph2, Chinasaba with bph8 gene, IR 36 (with bph2 gene), IR 64 (with Bph1+ gene) and Milyang 63 with unknown genetics performed better at one location each. Two gene differentials viz., OM 4498 with unknown genetics and IR-71033-121-15 with Bph20/21 genes showed susceptible reaction at all test locations.

At Pantnagar, lowest nymphal survival was observed in PTB33 (32.0%) followed by ASD7, ARC10554 and IR 64 and highest nymphal survival was observed in TN1 (74.0%) followed by MUTNS 1 and Milyang 63. IR36 took more days to wilt (16.0) followed by MUTNS 1 and ASD7. Honeydew excretion was the lowest in PTB33 (105.0 mm²) followed by ASD 7 and Babawee whereas it was highest in Milyang 63 (369.4 mm²) followed by TN1 and IR-65482-7-2-216-1-2-B. At Maruteru, highest nymphal survival was observed in TN1 (83.3%) followed by ASD7 and MUTNS1 while lowest nymphal survival was observed in PTB33 (33.3%) followed by ASD7 and RP 2068-18-3-5. Honeydew excretion was the lowest in RP2068-18-3-5 (36.7 mm²) followed by PTB33 (40 mm²) and RatuHeenati whereas it was highest in IR-71033-121-15 (146.0 mm²) followed by TN1 and ASD7.

Among the 17 gene differentials evaluated, two differentials viz., PTB 33 and RP 2068-18-3-5 were promising in 13 and 10 tests respectively out of 13 locations. Swarnalatha performed better in 9 locations and T12 performed better in 5 locations. Babawee and Pokkali were promising at 4 locations each. ARC 10550 showed low damage at 3 locations. Three gene differentials viz., Rathu Heenati, IR-65482-7-2-216-1-2-B, MUTNS 1 showed promising reaction at 2 locations each. Five gene differentials viz., ASD7, Chinasaba, IR 36, IR 64 and Milyang 63 performed better at one location each. Two gene differentials OM 4498 and IR-71033-121-15 showed susceptible reaction at all test locations.

b) Gall midge biotype monitoring trial (GMBT) Gall midge biotype trial was constituted with a set of 19 gene differentials categorized into 4 groups, along with the susceptible check TN1 in the fifth group and three lines with *Gm4*, *Gm8* and *gm3* genes in the background of Improved Samba Mahsuri and INRC17470 in the 6th group. The trial was conducted at 20 locations in 10 States of India. The reaction of the differentials was observed at both 30 DAT and /or 50 DAT in terms of percent plant damage and silver shoots (%). Data with >50 % plant damage/ $\geq 15\%$ SS in TN1 at a location was considered as valid. Though gall midge incidence was recorded at Raipur and Aduthurai, the severity was low. The results of the evaluation from the valid data from research stations at 17 locations in 18 tests are summarized in **(Table 2.2.2)** and discussed as under.

Assam

Titabar: All the differentials were susceptible

Odisha

Cuttack: The evaluation was carried out in summer 2023. ARC5984 and Aganni recorded nil damage. All the other differentials were susceptible.

Chiplima: Except Kavya, W1263 (*Gm1*) and RP5923 (*gm3*) recorded nil damage. Aganni, INRC 3021, and RP5925-24 (*Gm8*), Madhuri L9 (*Gm9*), ARC5984 and INRC17470 had <10 % plant damage. Variation in the reaction of the other donors was observed within the groups.

Jharkhand

Ranchi: Differentials from Group 1 (Kavya, W1263, ARC6605), Group 3 (CR-MR 1523), Group 4 (Abhaya, Aganni and INRC3021) recorded nil damage

Chhattisgarh

Ambikapur: Kavya W1263 and RP5922-21 (*Gm1*); Aganni, INRC 3021, INRC 15888 and RP 5925-24 (*Gm8*) recorded <10% DP in the field reaction at this location.

Jagdalpur: Reaction of differentials at Jagdalpur were categorized as R-S-S-R-S-S with exceptions of ARC 6605 in Group 1 being susceptible. RP 2068-18-3-5 and INRC15888 recorded low damage of 20% DP.

Maharashtra

Sakoli: This year only Aganni and INRC 3021(both with *Gm8*), RP 5923, INRC 17470 and W1263 (*Gm1*) recorded nil damage at this location.

Telangana state

IIRR: The populations at IIRR was collected from farmers' fields at Medchal and were maintained in greenhouse on TN1. All the differentials were promising with nil damage except for Madhuri L9 and BG380-2.

Jagtial: Earlier the populations at Jagtial conformed to the typical pattern of R-S-R-R-S for biotype 3. This year, only Aganni and INRC 3021 (with *Gm8* gene) from Group 4 differentials were promising with nil damage.

Warangal: Aganni and INRC 3021(with *Gm8*), W1263 (*Gm1*), RP5923 (*gm3*) and the new donor INRC17470 exhibited nil damage at Warangal research station. W1263 recorded 15% DP and RP5925-24 (nil damage) in the evaluation in the farmer's field at Kothapally which is 30 km away from research farm. It is interesting to note that the virulence on *Gm11* and *gm3* is less in farmers' field as compared to the reaction in the research station.

Andhra Pradesh

Maruteru: All the gene differentials tested exhibited susceptibility to this population at 50 DAT except for Aganni and RP5925-24, INRC 15888 and Kavya which recoded low damage ($\geq 15\%$ DP)

Nellore: All the gene differentials were susceptible to this population.

Ragolu: Differentials of Group 3 and 4 conferred resistance to gall midge at this location which exhibits typical reaction pattern (S-S-R-R-S) of biotype 4. Even RP5925-24, RP5923 and INRC 17470 recorded nil damage.

Karnataka

Gangavati: Only ARC 6605 (Group I differentials) recorded nil damage while, all the other differentials were susceptible.

Brahmavar: Except for group 2 differentials (except Dukong1) all other differentials recorded nil damage which is typical of biotype 3 (RSRRS).

Kerala

Moncompu; Only Kavya (Gm1) and INRC 17470 recorded nil damage. *Pattambi:* All the differentials were susceptible

Overall reaction: Evaluation of the gene differentials in one greenhouse and 17 field tests at 17 locations identified Aganni (Gm8), INRC 3021 (Gm8) as promising in 10 and 9 tests, respectively of the 18 valid tests. INRC 17470 was promising in 7 tests. W1263 and Kavya (Gm1) and RP 5923 (gm3) were promising in 7 tests each of the 18 valid tests. At Cuttack, ARC 5984 and at Gangavathi ARC 6605 were promising. The results suggest that donors with Gm8 and Gm1 gene confer resistance to gall midge across most the test locations.

– Entomology
2
Vol.
2023,
5
Report
Progress
Annual
ICAR-IIRR

		Table:2.2.1 Performance of	promising gei	ne diff	erentia	lls in P	lanthol	pper S _I	oecial S	creeni	ng Tria	I (PHS	S) -kha	rif 202;	3				
Entrv		Cross							Browr	l planth	opper						WBI	Н	Total
No.	Designation	combination	Gene	IIRR	ADT	CBT	СТС	GNV	LDN	MND	MTU	NDL	PNT	RNR	RPR	MGL	IIRR	CBT	15)
+	ASD7 (Acc 6303)	pure line selection from Karsamba Red	bph2	4.5	0.6	7.0	0.6	5.7	8.8	9.0	7.7	8.6	5.3	8.7	9.0	9.0	8.8	6.1	1
2	Babawee	Land race	bh4d	3.0	9.0	6.0	7.0	4.3	6.5	7.0	4.3	8.0	5.2	8.7	4.2	8.8	8.3	5.4	4
3	Chinasaba (Acc33016)	Land race	84dd	5.0	7.0	8.0	0.6	8.3	8.8	9.0	5.7	8.6	6.6	8.7	9.0	8.7	8.5	6.0	1
4	IR 36	IR 1561-228//4*IR661-1-140-3- 117/O.nivara///CR 94-13	24qd	7.3	7.7	8.4	0.6	7.7	7.8	9.0	5.0	8.2	6.7	8.7	6.4	9.0	9.0	8.2	~
5	ARC 10550	Assam Rice Culture	5ydq	2.8	6.3	8.6	0.6	3.7	8.8	7.0	5.7	8.5	7.0	8.5	3.5	9.0	7.0	5.2	с
9	IR64	IR 5657-33-2-1/IR 2061-465-1- 5-5	Bph1+	8.0	7.7	0.6	0.6	6.3	6.8	9.0	4.3	8.3	8.7	8.7	7.3	8.9	9.3	6.2	-
7	IR-65482-7-2-216-1- 2-B	IR 31917-45-3-2- 2*3/0.australiensis	Bph18(t)	6.4	7.7	7.0	9.0	9.0	7.2	5.0	4.3	7.9	6.9	8.8	9.0	9.0	5.5	6.8	2
6	Milyang 63	TONGIL/IR946-33-2-2- 2//YR675-131-2	ż	7.3	0.0	7.0	0.6	8.3	8.3	7.0	5.0	8.7	7.1	8.7	6.7	9.0	6.4	8.8	-
11	MUTNS 1	Nizersail Mutant	i	7.2	6.3	5.4	0.6	7.7	8.6	5.0	5.7	8.3	8.7	8.9	4.8	9.0	7.0	7.6	2
13	Pokkali	saline tolerant rice variety	6ydq	6.2	9.0	5.4	0.6	1.0	8.1	5.0	5.7	7.6	8.7	8.8	9.0	8.9	2.0	4.4	4
14	PTB 33	Resistant Check	bph2+Bph3+	2.4	4.3	4.8	3.0	2.3	2.2	3.0	7.0	3.6	8.7	4.7	2.1	4.6	3.4	5.0	13
16	RatuHeenati	Land race	714d8+8h17	8.7	6.3	6.0	0.6	2.3	6.3	5.0	5.7	7.2	8.8	8.7	9.0	6.7	6.1	5.8	2
17	RP 2068-18-3-5	Swarnadhan/Velluthacheera	Bph33(t)	1.1	3.0	3.2	2.0	5.7	2.6	3.0	5.7	5.3	8.9	3.7	3.1	4.4	6.9	3.8	10
18	Swarnalatha (Acc33964	Land race	Bph6	2.3	4.3	4.2	9.0	3.0	7.6	5.0	5.0	3.1	7.1	8.3	6.9	6.4	3.4	4.6	6
Promisi	ng level			5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
No of p	romising entries			8	с	4	2	7	2	œ	7	2	0	2	5	2	ო	4	

				Table .	2.2.2 Re	action (of gene	differen	tials ag	ainst g	all midg	e popul	ations ir	n GMBT,	kharif 2	023					
			IIRR	ABP	СНР	JDP	CTC	JGT	BRH	RNC	RGL	SKL	MGL	WGL\$	MNC	PTB	GNV	MTU	NLR	TTB	Overall
	Difformation	Cono	GMB1	GMB1	GMB1	GMB1	GMB2	GMB3	GMB3	GMB3	GMB4	GMB4	GMB4M	GMB4M	GMB5	GMB5	GMB	GMB	GMB	GMB	NPT
Enuy no.	DILLELEURIN	allao	ВH	50DT	50DT	50DT		50DT	30DT	50DT	50DT	50DT	50DT	50DT	50DT	50DT	50DT	50DT	70DT(Rt)	50DT	18
			% DP	%DP	%DP	%DP	%SS	%DP	%SS	%SS	%DP	%DP	%DP	%DP	%DP	%DP	%DP	%DP	%DP	%SS	
1	KAVYA	Gm 1	0.0	0.0	0.0	0.0	20.0	100.0	0.0	0.0	0.06	5.6	35.0	30.0	0.0	61.9	65.0	10.0	20.0	8.3	7
2	W 1263	Gm 1	0.0	10.0	0.0	0.0	26.1	100.0	0.0	0.0	70.0	0.0	0.0	15.0	13.3	85.7	0.06	30.0	40.0	18.2	7
3	ARC 6605	(¿)	0.0	30.0	30.0	70.0	9.5	100.0	0.0	0.0	70.0	60.0	45.0	25.0	40.0	100.0	0.0	35.0	20.0	9.1	4
4	PHALGUNA	Gm 2	0.0	30.0	30.0	40.0	8.3	100.0	14.3	8.0	70.0	50.0	65.0	40.0	26.7	100.0	80.0	75.0	60.0	18.2	1
5	ARC 5984	Gm 5	0.0	30.0	10.0	10.0	0.0	100.0	25.0	13.9	80.0	50.0	31.6	20.0	33.3	52.4	70.0	40.0	80.0	7.7	2
9	DUKONG 1	Gm 6t	0.0	10.0	40.0	20.0	13.6	100.0	0.0	0.0	80.0	52.6	40.0	55.0	26.7	100.0	70.0	30.0	20.0	5.0	3
7	RP 2233-156-8	Gm 7	0.0	20.0	30.0	70.0	26.1	100.0	25.0	10.2	0.06	70.0	65.0	15.0	26.7	95.2	100.0	45.0	90.06	4.5	1
8	MADHURI L 9	Gm 9	NT	50.0	10.0	50.0	42.9	100.0	25.0	0.0	90.0	25.0	45.0	50.0	20.0	100.0	70.0	NG	80.0	9.5	1
6	BG 380-2	Gm 10	NT	30.0	20.0	60.0	73.9	100.0	25.0	0.0	70.0	65.0	40.0	30.0	53.3	100.0	100.0	50.0	90.06	5.3	1
10	MR 1523	Gm 11	0.0	20.0	40.0	40.0	42.9	95.0	0.0	0.0	0.0	0.06	25.0	20.0	33.3	18.8	70.0	20.0	80.0	6.7	4
11	RP 2068-18-3-5	gm 3	0.0	20.0	20.0	20.0	28.6	95.0	0.0	12.6	0.0	30.0	25.0	5.0	46.7	95.2	95.0	30.0	100.0	7.7	3
12	ABHAYA	Gm 4	0.0	30.0	30.0	0.0	12.5	60.0	0.0	0.0	0.0	63.2	10.0	20.0	53.3	100.0	95.0	25.0	30.0	7.1	5
13	INRC 3021	Gm 8	0.0	10.0	10.0	0.0	8.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.0	100.0	25.0	25.0	30.0	16.7	9
14	AGANNI	Gm 8	0.0	10.0	10.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	40.0	100.0	20.0	15.0	30.0	5.9	10
15	INRC 15888	Gm 8	0.0	10.0	20.0	20.0	95.8	100.0	0.0	15.2	0.0	15.0	45.0	30.0	26.7	85.7	80.0	5.6	0.06	7.7	3
16	RP 5925-24	Gm 8	0.0	0.0	10.0	60.0	36.8	60.0	0.0	6.6	0.0	20.0	5.0	0.0	66.7	66.7	95.0	10.0	100.0	13.3	5
17	RP 5922-21	Gm 1	0.0	0.0	30.0	30.0	4.5	100.0	0.0	0.0	0.0	50.0	35.0	36.8	73.3	85.7	100.0	40.0	30.0	8.3	5
18	RP 5923	gm 3	0.0	20.0	0.0	10.0	13.0	10.0	0.0	0.0	0.0	0.0	0.0	10.0	40.0	90.5	75.0	35.0	30.0	8.3	7
19	INRC 17470	Gm 8	0.0	10.0	10.0	90.0	8.3	20.0	0.0	7.9	0.0	0.0	0.0	0.0	0.0	90.5	30.0	20.0	60.0	6.7	7
20	TN 1	none	100.0	50.0	50.0	80.0	100.0	100.0	17.6	15.5	100.0	100.0	75.0	70.6	100.0	81.0	100.0	42.1	100.0	35.3	0
	TN1																	95.0			
Total tested			18	20	20	20	20	20	20	20	20	20	20	20	20	20	20	19	20	20	
Maximum da	Image in the trial		100.0	50.0	50.0	90.0	100.0	100.0	25.0	15.5	100.0	100.0	75.0	70.6	100.0	100.0	100.0	75.0	100.0	35.3	
Minimum dar	mage in the trial		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.8	0.0	5.6	20.0	4.5	
Average dan	nage in the trial		5.6	19.5	20.0	33.5	28.6	77.0	6.6	4.5	40.5	37.3	29.3	23.6	37.0	85.5	71.5	30.7	59.0	10.5	
Damage in T	_N1		100.0	50.0	50.0	80.0	100.0	100.0	17.6	15.5	100.0	100.0	75.0	70.6	100.0	81.0	100.0	42.1	100.0	35.3	
Promising lev	vel		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
No. promisinų	ğ		17	3	3	5	2	2	14	12	10	5	5	4	2	0	1	0	0	0	

c) Planthopper population monitoring trial (PHPM)

The planthopper population monitoring trial (PHPM) was conducted to monitor the virulence pattern of brown planthopper populations against selected donors by releasing a single brown planthopper female and testing its progeny. This trial was conducted at six locations viz., IIRR Rajendranagar, Coimbatore, Gangavathi, Ludhiana, New Delhi and Pantnagar. Four gene differentials viz., PTB 33 (Bph2, 3 and 32 genes), RP 2068-18-3-5 (bph 33t gene), RP Bio4918-230S (bph39 and 40 genes) and Salkati (two QTLs qBph4.3 and qBph4.4) were tested along with susceptible variety, TN1. The four gene differentials along with TN1 were planted in a single earthen/plastic pot with 6-7 seedlings per each differential in two sets. When the plants in the first set were 45 days old, they were covered with a mylar tube and one gravid BPH female was released into the mylar tube and the open end of the tube was covered with muslin cloth. The female was allowed to oviposit for three days and removed afterwards and each gene differential was covered with separate mylar tubes. The number of nymphs hatched from each gene differential and TN1 were counted and recorded. In the second set of pots, each gene differential was caged separately with mylar tubes and known number of nymphs from the first set were released into the second set of pots. The number of adults, nymphal duration, their sex and macroptery were recorded on each gene differential and the results are presented here in Table 2.2.3 and figures 1 and 2.

IIRR, Rajendranagar: The females laid eggs on all the gene differentials and the number of nymphs hatched were more on TN1 (92.0) and were lowest on PTB33 (15.0) and the total nymphs hatched were 182/female, the egg period was 9 days. The nymphal duration was shortest on TN1 and Salkathi (12.7 days) and longest in PTB33 (16.9 days). The sex ratio was in favour of males in RP Bio4918-230S, RP 2068-18-3-5 and Salkathi. The winged insects outnumbered the wingless insects in all the gene differentials. The macropterous adults were 60.0% and they were less in Salkathi (53.5%) and more in PTB33 (71.2%).

Coimbatore: All the females laid eggs on all the gene differentials and the nymphs hatched were highest on TN1 (43.2) and lowest on RP 2068-18-3-5 (4.3). The total number of nymphs hatched /female were 62.6. The incubation period was 13.0 days.

Ludhiana: All the females laid eggs on all the gene differentials and nymphs hatched were highest on TN1 (76.5) and lowest on PTB33 (21.2). The total number of nymphs hatched /female were 174.0. The egg period ranged from 10.3 days (TN1) to 11.0 days (RPBio4918-230S). The nymphal survival was highest in TN1 (86.7%). Nymphal duration was shortest on TN1 (17.1) and highest in PTB33 (20.6). Males were highest in Salkathi (64.8%) and sex ratio was in favour of males except in TN1 (1.42F:1.0M). The macropterous adults were more (68.0%) than wingless adults (32.0%) and were more in PTB33 (73.4%). The wingless adults were more in TN1 (43.5%).

Pantnagar: All the females laid eggs on all the gene differentials and nymphs hatched were highest on TN1 (44.8) and lowest on PTB33 (18.5). The total number of nymphs hatched/female were 139.0. The egg period was 12.0 days. The nymphal survival was highest on TN1 (82.0%) and lowest in PTB33 (42.8%) and nymphal duration was 15.6 to 16.1 days. Males were lowest in TN1 (31.2%) and sex ratio was in favour of females. The macropterous adults were more (98.6%) than wingless adults (1.4%) and were more on PTB33 and RPBio4918-230S (100%). The wingless adults were more in Salkathi (4.6%).

Gangavathi: All the females laid eggs on all the gene differentials and the nymphs hatched were highest on TN1 (70.48) and lowest on PTB33 (29.12) and the fecundity per female was 219.5 eggs. The incubation period was 19 days.

New Delhi: All the females laid eggs on all the gene differentials and nymphs hatched were highest on TN1 (57.25) and lowest on RPBIO4918-230S (24.5). The total number of nymphs hatched/female were 174.0. The egg period ranged from 16.0 days (TN1) to 17.5 days (PTB33). The nymphal survival was highest in TN1 (81.25%) and lowest on PTB33 (48.33%). Nymphal duration was shortest on TN1 (14.5 days) and longest in RP2068-18-3-5 (15.1). Males were highest in Salkathi (49.3%) and sex ratio was in favour of females in others. The macropterous adults were more (92.2%) than wingless adults (7.8%) and were more in PTB33 and salkathi (100.0%). The wingless adults were more in TN1 (17.3%).

The virulence monitoring studies of brown planthopper populations conducted using four gene differentials viz., PTB 33, RP 2068-18-3-5, RP Bio4918-230S and Salkati along with susceptible variety, TN1 revealed that IIRR brown planthopper population was more virulent than the other BPH populations viz., Ludhiana, Pantnagar and New Delhi in terms of highest nymphal hatching, short incubation and nymphal periods, lowest winged insects. Among the gene differentials, BPH populations were less virulent on PTB 33 in terms of low nymphal hatching, low nymphal survival, long egg period, long nymphal duration, more males and more winged insects.

ICAR-IIRR Annual Progress Report 2023, Vol. 2 – Entomology

Fig. 1 Virulence of brown planthopper populations on gene differentials

Fig. 2 Virulence of brown planthopper populations of different locations

Entomology
Ι
\mathbf{C}
∕ol.
2023,
Report
Progress
Annua
-IIRI
Ż
-
C)
\mathbf{i}

	1N1			70.5		19	NR	NR	NR	NR	NR	NR	NR	NR
	Salkathi			33.0		19	RN	NR	NR					
Sangavathi	RP bio 4918-230S	25	100	47.0	219.48	19	NR	NR	NR	NR	NR	NR	NR	NR
	RP2068- 18-3-5			39.9		19	NR	NR	NR	NR	NR	NR	NR	NR
	PTB33			29.1		19	NR	NR	NR	NR	NR	NR	NR	NR
	TN1			43.2		13	NR	NR	NR	NR	NR	NR	NR	NR
	Salkathi			5.6		13	NR	NR	NR					
Coimbatore	RP bio 4918-230S	10	100	4.9	62.6	13	NR	NR	NR	NR	NR	NR	NR	NR
	RP2068- 18-3-5			4.3		13	NR	NR	NR	NR	NR	NR	NR	NR
	PTB33			4.6		13	NR	NR	NR	NR	NR	NR	NR	NR
	TN1			92.0		6	83.3	12.6	35.6	2.21:1.0	28.9	35.6	26.7	8.9
	Salkathi			25.0		6	50.0	12.7	60.5	0.66:1.0	18.3	44.2	35.2	2.4
IIRR	RP bio 4918-230S	25	100	30.0	182	6	55.6	14.9	52.5	0.95:1.0	13.3	34.1	43.3	9.2
	RP2068- 18-3-5			20.0		6	44.4	13.1	60.8	0.70:1.0	24.0	15.1	36.9	23.9
	PTB33			15.0		6	51.9	16.9	44.4	1.26:1.0	35.6	20.0	35.6	8.9
Locations	Gene differential	No. females released	Virulent females (%)	No. nymphs hatched/female	Total nymphs/female	Egg period	Nymphalsurival (%)	Nymphal duration	Males (%)	Sex ratio	winged females(%)	wingless females(%)	Winged males (%)	Wingless males (%)

Table: 2.2.3 Virulence monitoring of brown planthopper population in PHPM, kharif 2023

Table: 2.2.3 Virulence monitoring of brown planthopper population in PHPM, kharif 2023

I able: 2.2.3 VII ulel		IOLING OF L	ломп ріапі	inupper p	opulation		VI, KIIdi II 2	2020							
Locations			Ludhiana					Pantnagar					New Delhi		
Gene differential	PTB33	RP2068- 18-3-5	RP bio 4918-230S	Salkathi	TN1	PTB33	RP2068- 18-3-5	RP bio 4918-230S	Salkathi	TN1	PTB33	RP2068- 18-3-5	RP bio 4918-230S	Salkathi	TN1
No. females released			20					25					12		
Virulent females (%)			100					100					100		
No. nymphs hatched/female	21.2	23.9	26.9	25.9	76.5	18.5	24.9	26.9	24.1	44.8	25.2	27.3	39.4	24.5	57.3
Total nymphs/female			174					139					174		
Egg period	10.8	10.8	11	10.8	10.3	12	12	12	12	12	17.5	16	16	17	16
Nymphalsurival (%)	60.8	63.3	62.5	64.2	86.7	43.2	42.8	44.8	59.6	82.0	48.3	53.8	61.3	54.2	81.3
Nymphal duration	20.6	19.6	18.5	19.7	17.1	15.7	15.7	16.0	16.0	15.6	14.9	15.1	14.9	14.9	14.5
Males (%)	61.7	60.2	64.3	64.8	41.3	41.5	39.4	33.3	36.5	31.2	46.3	43.3	42.8	49.3	40.8
Sex ratio	0.62:1.0	0.65:1.0	0.56:1.0	0.54:1.0	1.42:1.0	1.41:1.0	1.54:1.0	2.0:1.0	1.74:1.0	2.21:1.0	1.16:1.0	1.31:1.0	1.34:1.0	1.03:1.0	1.45:1.0
winged females(%)	22.8	27.9	25.2	25.8	23.9	58.6	59.6	66.7	63.2	64.9	53.7	46.2	46.0	53.8	42.4
wingless females(%)	15.5	11.9	10.5	9.4	34.9	0.0	1.0	0.0	0.3	3.8	0.0	10.5	11.3	0.0	17.3
Winged males (%)	50.6	43.6	42.8	42.6	32.7	41.4	38.5	33.3	36.1	30.5	46.3	43.3	42.8	46.2	40.3
Wingless males (%)	11.1	16.7	21.5	22.2	8.6	0.0	0.9	0.0	0.3	0.7	0.0	0.0	0.0	0.0	0.0

2.33

c) Gall midge population monitoring (GMPM)

This trial has been designed to complement the study on characterization of gall midge biotypes. Reaction of single gall midge female to a set of three gene differentials *viz.*, W1263 (Gm1), Aganni (Gm8), Akshayadhan PYL (Gm4 + Gm8) and Purple variety (no resistance gene but highly susceptible) would generate information on the virulence pattern of the gall midge population. This year the trial was conducted at seven locations *viz.*, Gangavathi, Moncompu, Pattambi, Jagtial, Ragolu, Warangal and Brahmavar. The results are presented in Table **2.2.4** and discussed location wise.

Ragolu: At this location, 250 single females were tested and the results suggest that the population was highly virulent on W1263 (68.2%) followed by Akshyadhan (Gm4+ Gm8 (66.36%) and the purple variety (48.6%). None were virulent on Aganni. The sex ratio in W1263 was in favour of males and the male progeny (%) was high in W1263.

Jagtial: Of the 250 female insects tested, only 65.2% were virulent on Purple variety (no resistance gene); 25.5% were virulent on W1263 (Gm1), and none were virulent on Aganni (Gm8) and Akshayadhan (Gm4+Gm8). This is similar to the last years result. The sex ratio was favorable to females in W1263 and purple varieties. Male progeny was 30.7% on W1263 as compared to 36.5% on purple variety. These results support the reaction of these differentials in GMBT trial at Jagtial suggesting Aganni and Akshayadhan (Gm4+Gm8) as promising donors at this location.

Warangal: At this location, 250 female insects were tested. Low virulence of tested females was recorded on Aganni (5.2%). Sex ratio was skewed towards females in all the test entries except Akshayadhan. Damage was <10% SS in Aganni and Akshayadhan (Gm4+Gm8). Male progeny (%) was very high in Akshayadhan PYL (58.3%) followed by Aganni (38.5%), purple variety (32.9%) and W1263 (32.5%). The results are similar to the reaction pattern observed in GMBT trial conducted this year at this location, but low virulence was observed in Aganni in this trial.

Pattambi: At this location, 220 female insects were tested. Low virulence (14.1%) was observed on W1263 (*Gm1*) with 11.8 % SS. The other two differentials and purple variety were highly susceptible with more than 54 % of the females being virulent. Male progeny varied from 23.2-31.1% in all the differentials. Sex ratio is highly skewed towards females which is similar to the high pest incidence in other trials.

Moncompu: Single female progeny test was done with 150 females of which 92 % were virulent. Of the virulent insects, only 4.7% were virulent on purple entry (no gene), 46.7% on W1263 (Gm1), 66.0% on Aganni (Gm8) and 50.07 % on Akshayadhan (Gm4+Gm8). It is interesting to note that virulence was very high in the gene differentials as compared to purple variety. Though the severity of pest

was low in GMBT trial, it can be deduced that under favourable conditions, there can be an upsurge in the gall midge infestation at this location.

SI No	Locations	Total females	Differentials	No of virulent	virulent females	%SS	Total	% Male	Sex ratio
110		tested		females	(%)		progerty	progerty	(101.1)
1	Ragolu	250	Aganni	avirulent	-	-	-	-	-
			Akshayadhan PYL	107	66.36	24.8	154	47.3	1.0M:1.11F
			W1263	88	68.2	15.7	106	58.5	1.0M:0.71F
			Purple	146	48.6	25.6	174	41.4	1.0M:1.42F
2	Jagtial	250	Aganni	avirulent	-	-	-	-	-
			Akshayadhan PYL	avirulent	-	-	-	-	-
			W1263	56	25.5	5.96	75	30.7	1.0M:2.3F
			Purple	138	65.2	13.7	170	36.5	1.0M:1.74F
3	Warangal	250	Aganni	13	5.2	1.3	13	38.5	1.0M:1.6F
			Akshayadhan PYL	12	4.8	1.5	12	58.3	1.0M:0.71F
			W1263	147	58.8	40.15	379	32.5	1.0M:2.08F
			Purple	163	65.2	43.63	420	32.9	1.0M:2F
4	Pattambi	220	Aganni	149	67.7	54.3	350	23.2	1.0M:4.30F
			Akshayadhan PYL	180	81.8	69.5	431	28.3	1.0M:3.5F
			W1263	31	14.1	11.8	55	31	1.0M:3.2F
			Purple	194	88.2	67.3	506	31.1	1.0M:3.2F
5	Moncompu	150	Aganni	76	50.7	13.4	86	45.3	1.0M:1.53F
			Akshayadhan PYL	99	66	23.6	136	54.4	1.0M:1.23F
			W1263	70	46.7	12.4	80	42.5	1.0M:1.5F
			Purple	7	4.7	0.93	7	42.9	1.0M:1.33F
6	Gangavathi	250	Aganni	103	41.2	14.48	176	21.4	1.0M:4.7F
			Akshayadhan PYL	59	23.6	9.04	110	19.6	1.0M:5.1F
			W1263	92	36.8	11.92	144	21	1.0M :4.8F
			Purple	167	66.8	25.44	315	24	1.0M:4.2F
7	Brahmavar	47	Aganni	2	4.3	4.3	2	100	1.0M:0.0.F
			Akshayadhan PYL	14.9	14.9	14.9	7	14.3	1.0M:0.25F
			W1263	avirulent	-	-	-	-	-
			Purple	37	78.7	93.6	44	40.9	1.0M:1.06F

 Table 2.2.4 Virulence composition of gall midge populations in GMPM, kharif 2023

Gangavathi: Of the 250 female insects tested 66.8% were virulent on Purple variety (no gene), 36.8% on W1263 (Gm1), 28.6% on Aganni (Gm8) and 14.48% on Akshayadhan PYL (Gm4 + Gm8). The sex ratio was very much skewed towards females in all the test entries which is similar to the high silver shoot damage reported in other trials. Male progeny ranged from was 19.6-24.0 % in this trial. These results support the reaction of these differentials at Gangavathi in GMBT trial except for recording of high virulence on Aganni in this test.

Brahmavar: At this location 47 females were tested. None of the tested females were virulent on W1263, 2.0 % were virulent on Aganni, 14.9% on Akshayadhan PYL and 78.7% on Purple variety. It is interesting to note that there is a very low level of virulence on Aganni though in GMBT trial nil damage was recorded.

Studies on virulence composition of gall midge populations in GMPM trial conducted at seven locations across four southern states in India suggest that there is variation in the pattern of virulence to gene differentials. Aganni (Gm8) holds promise at Jagtial, and Ragolu but low virulence was observed at Warangal. Low virulence against W1263 (Gm1) was observed at Pattambi. Akshayadhan (with Gm4 + Gm8) was promising at Jagtial and low virulence was recorded at Warangal. At Brahmavar, the populations were avirulent on W 1263, but low virulence was recorded on Aganni. However, a close monitoring of the virulence pattern in endemic areas is important.

2.3.1 Evaluation of granular insecticides for the management of gall midge (EIGM)

Asian gall midge (*Orseolia oryzae* Wood-Mason) is one of the key pests of rice at vegetative phase of crop growth particularly in the rainy season. Of late, there is an uptrend in its incidence in many areas leading to severe yield losses. In order to identify the effective granular insecticides/combination of granular insecticides for the management of gall midge, a field trial was conducted at 8 locations (MTU, WGL, GNV, ADT, PTB, JDP, ABP, and CHP) during 2023 *Kharif* season.

Treatments:

Crop Stage	Trt. No.	Insecticide	Dosage (formulation)
Seed Treatment alone	T 1	Thiamethoxam 25% WG	4 g/kg seed
Nursery alone (15	T ₂	Carbofuran 3% CG (Check1)	33 Kg per ha (3.3 g/m ²⁾
DAS/one week before	T 3	Fipronil 0.3 GR	25 Kg per ha (2.5 g/m ²)
transplantation)	T 4	Chlorantraniliprole 0.4 GR	10 Kg per ha (1.0 g/m ²)
	T 5	Carbofuran 3% CG (Check2)	33 Kg per ha (3.3 g/m ²)
Main field alone (20-25	T ₆	Fipronil 0.3 GR	25 Kg per ha (2.5 g/m ²)
DAT)	T 7	Chlorantraniliprole 0.4 GR	10 Kg per ha (1.0 g/m ²)
	T 8	Cartap hydrochloride 4% GR	18.75 kg per ha(1.9g/m ²)
	T 9	$T_1 + T_6$	
Seed Treatment + Main	T 10	$T_1 + T_7$	
	T 11	$T_1 + T_8$	
Nurcony + Main field	T ₁₂	$T_3 + T_7$	
Ruisciy + Maill lielu	T 13	$T_3 + T_8$	
Untreated control	T ₁₄	Untreated Control	

Statistical analysis: Data were subjected to appropriate transformations and to two-way ANOVA. Treatment effects across the locations (treatment*location interaction) were estimated to draw overall conclusions. Means were separated by LSD at five per cent level of significance.

Results:

Effect on gall midge damage at different locations:

Percent silver shoots (SS) in the untreated control plot ranged from 7.8 (ABP) to 69.9 (MTU) and is above the ETL (5.0%). At all the locations, the treatment effects were significant in comparison to the untreated control. Location wise results are given below in terms of mean of %SS at 35, 50, and 65 days after treatment (DAT) (Table 1).

ADT: T13 (3.4 %SS) was the most effective treatment followed by T9 (3.1 %SS), and T10 (3.4 %SS), T12 and T13 (3.4 % SS) as compared to the remaining treatments.

AMB: T10 (3.4 %SS) was most effective treatment followed by T11 and T12 (4.3 %SS each) as compared to the remaining treatments. In untreated plot 20.16 %SS were recorded.

CHP: All the treatments were significantly effective as compared to the untreated control (T14) (18.6 %SS) and T6 (2.8%SS) was most effective treatment followed by T5 and T9 (3.7 % SS each).

GNV: All the treatments were significantly effective as compared to the untreated control (T14) (31.6 %SS) and T10 (6.6 %SS) was most effective treatment followed by T9 and T12 (7.1 and 8.2 % SS respectively).

JDP: All the treatments were significantly effective as compared to the untreated control (T14) (31.8 %SS). T12 was the most effective (11.8 %SS) treatment. T13, T4 and T4 (12.0, 13.3 and 13 %SS respectively %) were comparable to the best performing treatment.

MTU: Gall midge incidence was very high (81.4 %SS) at this centre. In the untreated control SS were 69.9%. Treatment mean differences were not significant. However, in T3 relatively lower damage was recorded (40.0 %SS).

PTB: T12 Treatment (32.2 %SS) was the most effective treatment followed by T6 (36.4 %SS) and were significantly superior to untreated control (8.61 %SS) but were on par with rest of the treatments.

WGL: Treatment effects were significant and in all the treatments significantly lower damage was recorded as compared to the untreated control (12.7 %SS). T2 was most effective with significantly lower SS (3.8%) followed by T5 (4.0 % SS), and T9 (4.4 %SS).

Effect on the gall midge damage across the locations (treatment*locations):

In order to arrive at treatment effects across the locations (treatment*locations), interaction effects were analysed. T12 (fipronil 0.3 GR in nursery + chlorantraniliprole 0.4 GR in the main field) was most effective with significantly lower SS (9.1%) with 49.2 % reduction in silver shoots. T13, T10 and T9 were comparable to the best treatment (Table 1).

Stem borer:

Effect on stem borer damage at different locations:

Data from eight locations were considered for analysis. Only at GNV and JDP, DH damage crossed ETL of 10.0%. Dead hearts ranged from 4.7% (CHP) to 20.1% (JDP) in the untreated control. Treatment effects were significant at all the locations compared to untreated control. Location wise results are given below based on the mean of 35, 50, and 65 DAT (Tables 2 and 3).

ADT: T1 was the most effective treatment with significantly lower DH (2.1%). With respect to WE, all the treatments were at par and significantly superior to the untreated control. In T1, comparatively lower WE (3.5%) were recorded.

ABP: In the T10 treatment, significantly lower dead hearts were recorded. However, T4, T8, T9, T11, T12, and T13 treatments were at par with the best treatment T10. For WE, T10 was the most effective treatment (5.9% WE) and comparable to remaining treatments except T1, T2, T4 and T14 (18.5 %WE).

CHP: DH occurrence was lowest in T12 (0.8%) followed by T10 (1.0%), T13 and T4 (1.3 % each). With respect to WE, treatment effects were not significant but in T13, comparatively lower WE (4.1%) were recorded as compared to the remaining treatments.

GNV: T10 and T9 were most effective treatments with significantly lower DH (3.3% and 3.9% respectively). In untreated control (T14) 18.2% DH were recorded. For WE, T1 is the most effective treatment (3.5%WE) followed by T3 and is at par with the remaining treatments except T6 and T14.

JDP: T12 was most effective treatment with significantly lower DH (2.1%) as compared to rest of the treatments. T10 (2.2%) and T5 closely followed the best treatment. With respect to WE, T12 was the most effective treatment followed by T13 (13.3 and 13.6% WE respectively).

MTU: Only T4 was significantly effective in reducing DH damage (3.2 %) as compared to the untreated control (11.4 %). T13 was significantly superior with 11.8 % WE and was at par with remaining treatments except T3, T8 and T10.

WGL: All the treatments were significantly superior to untreated control (9.8 %DH) and T10 was the most effective one (1.5 %DH). T10 was the most effective treatment in reducing white ears (4.7 %WE).

Effect on stem borer damage across the locations (treatment*locations):

For dead hearts (DH); T10 (seed treatment with thiamethoxam 25% WG + chlorantraniliprole 0.4 GR in the main field) was the most effective treatment with 77.9% reduction over the untreated control. In case of WE, T13 (fipronil 0.3 GR in nursery+ cartap hydrochloride 4% GR in the main field) (47.7 % reduction over control) was the best treatment followed by T12 (fipronil 0.3 GR + chlorantraniliprole 0.4 GR in the main field) (47.4% reduction over control).

Effect on leaf folder damage across the locations (locationXtreatment):

In all the treatments, significantly lower leaf damage was recorded as compared to the untreated control (13.8 %) and T10 was the most effective with 48.1 % reduction in damage as compared to the control (Table 4).

Effect on spiders across the locations (locationXtreatment):

In T10 treatment, significantly higher number of spiders was recorded as compared to the control treatment followed by the untreated control (T14, 9.4). There was no significant difference between the remaining treatments (Table 4).

Effect on yield at different locations:

In general, treatments involving two rounds of application *i.e.*, ST+main field or nursery +main field resulted in higher yields as compared to untreated control and single application treatments (Table 5).

AMB: In T10 treatment, significantly higher yield was recorded (6025.4 kg/ha) as compared to the untreated control (T14) (4225.4 kg/ha).

ADT: T11 treatment resulted in better yield (3016.7 kg/ha) as compared to the untreated control (T14) (1766.7 kg/ha) and T1 (2306.7 kg/ha), but was at par with the remaining treatments.

CHP: Significantly higher yield (4341.7 kg/ha) was recorded in T12 treatmentas compared to remaining treatments and T9 and T10 treatments were comparable.

GNV: In T10 treatment, significantly higher yield (7351 kg/ha) was recorded followed by T9 (7246.3 kg/ha).

JDP: Significantly higher yield was recorded in T12 treatment (5020 kg/ha).

MTU: In T6 treatment, highest yield (5338.2 kg/ha) was recorded and was followed by T2 (5162 Kg/ha).

PTB: T7 treatment gave higher yield (2678.3 kg/ha) followed by T13 (2641 Kg/ha).

WGL: T5 was superior and gave highest yield (2309.5 kg/ha) amongst the treatments.

Effect on yield across the locations (location X treatment):

Treatment effects were significant and in all the treatments higher yield was recorded as compared to the untreated control (T14) (2615.9 kg/ha). T10 (seed treatment with thiamethoxam 25% WG + chlorantraniliprole granules in main field) was the best treatment with significantly higher yield (4372.5 kg/ha) as compared to remaining treatments with 67.2 % increase over control. T9 (seed treatment with thiamethoxam + fipronil granules in main field) (4205.9 kg/ha) was second best treatment with 60.8 % increase over control (Table 5).

Conclusions:

For gall midge, T12 (fipronil 0.3 GR in nursery + chlorantraniliprole 0.4 GR in the main field) was most effective with significantly lower SS (9.1%) with 49.2 % reduction in silver shoots. T13 (fipronil 0.3 GR in nursery+ cartap hydrochloride 4% GR in the main field), T10 (seed treatment with thiamethoxam 25% WG + chlorantraniliprole granules in main field) and T9 (seed treatment with thiamethoxam + fipronil granules in main field) were comparable to the best treatment.

For dead hearts (DH); T10 (seed treatment with thiamethoxam 25% WG + chlorantraniliprole 0.4 GR in the main field) was the most effective treatment with 77.9% reduction over the untreated control. In case of WE, T13 (fipronil 0.3 GR in nursery+ cartap hydrochloride 4% GR in the main field) (47.7% reduction over control) was the best treatment followed by T12 (fipronil 0.3 GR+ chlorantraniliprole 0.4 GR in the main field) (47.4% reduction over control).

With respect to yield, T10 (seed treatment with thiamethoxam 25% WG + chlorantraniliprole granules in main field) was the best treatment with significantly higher yield (4372.5 kg/ha) as compared to remaining treatments with 67.2% increase over control. T9 (seed treatment with thiamethoxam + fipronil granules in main field) (4205.9 kg/ha) was the second best treatment with 60.8% increase in yield over control.

Table 1 Field officer	u of aron	ular incorticidoc adainet rico	opim llen	io at diffo	rant loca	ione and	acroce	iteool od	o. ione (Tro	otmont*1	(notion)	
	א טו אומוו			לב מו חוווכו			1 901 033 1	ווב והרמו			οσαιισιι	
							Silver sho	ots (%)				
Cron Stage		Treatment				Locat	ion*				Treatm	nent*
		5									Locati	un#
			ADT	AMB	СНР	GNV	JDP	MTU	PTB	MGL	Mean	%ROC
Seed Treatment alone	1	Thiamethoxam 25% WG	4.3	1.7	8.0	21.8	16.2	50.8	38.6	6.2	11.4	36.6
			a-d(C.Z)	(4.1) ^{dD}	(4.b) ^{de}	(12.7) ^D	a(C.Y)	$(3.7)^{0}$	(Z3.9) ^{D-0}	(3.6)	(4.9) ⁰	
Nurserv alone	T_2	Carbofuran 3% CG (Check1)	9.4 (5.4) ^a	5.4 (3.1)∞	9.9 (5.7)∞	16.2 (9.3)₫	13.0 (7.5) ^{ef}	70.6 (4.6) ^{ab}	40.2 (24.6) ^{b-e}	3.8 (2.2)f	12.7 (4.8) ^b	28.8
(15 DAS/one week	ŕ	Einsteil 0.3 CD	5.1	5.3	4.5	19.8	14.3	40.0	37.9	5.0	9.7	16.0
before	13		(2.9) ^{b-e}	(3.1) ^{cd}	(2.6) ^{fg}	(11.5)c	(8.3) ^{c-e}	(3.5) ^b	(21.1) ^{de}	(2.9) ^{d-f}	(4.2) ^{d-f}	40.0
transplantation)	Ļ	Chlorantranilinrole 0.4 GR	3.8	4.9	10.5	16.9	13.3	72.7	52.2	7.7	12.3	311
	- 4		(2.2) ^{c-e}	(2.8) ^{c-e}	(0.0)c	(6.8) ^d	(7.7) ^{ef}	$(5.0)^{ab}$	(28.7) ^a	(4.4) ^{b-d}	(4.5) ^{b-d}	
	T ₅	Carbofuran 3% CG (Check2)	8.4	4.5	3.7	14.0	15.7	59.5	38.8 (01.0)	4.0	10.9	39.1
_		((4.8) ^a	(Z.6) ^{de}	(7.1)9	(8.U) ^e	(A.1) ^{b-d}	(4.0) ^{ab}	(72.0) ^{a-d}	$(2.3)^{T}$	(4.3) ^{d-r}	
	Ľ	Einmuil 0 3 GR	4.4	6.2	2.8	12.8	15.3(8.	81.4	38.0	4.7	11.8	34.3
Main field alone	-		(2.5) ^{b-d}	(3.6) ^{bc}	(1.6)9	(7.3) ^{e-g}	9) ^{b-d}	(4.7) ^{ab}	(23.8) ^{b-d}	(2.7) ^{d-f}	(3.9) ^{f-h}	2.
(20-25 DAT)	ŕ	Chlorantranilinrole 0.4 GR	4.2	4.9	11.0	11.7	14.1	72.9	47.3	9.3	12.0	37 B
	-		(2.4) ^{b-e}	(2.8) ^{c-e}	(6.4) ^c	(6.8) ^{f-h}	(8.2) ^{de}	(4.7) ^{ab}	(24.7) ^{a-d}	(5.4) ^b	(4.3) ^{се}	02.20
	Ļ	Cartan budrochlorido 10, CD	5.0	5.1	14.3	13.4	14.1	69.6	36.4	9.7	12.2	31 Q
	81		(2.9) ^{bc}	(2.9) ^{cd}	(8.3) ^b	(7.7) ^{eh}	(8.2) ^{de}	(4.5) ^{ab}	(22.6) ^{c-e}	(5.6) ^b	(4.6) ^{b-d}	یاں ا
	F	T ₁ + T ₆	3.1	4.6	3.7	7.1	14.7	72.7	43.6	4.4	10.3	10 E
	19		(1.8) ^{ef}	(2.6) ^{de}	(2.1)9	(4.1) i	(8.5) ^{b-e}	$(5.5)^{ab}$	(27.1) ^{a-c}	(2.5) ^f	(3.5) ^{ij}	44.0
Seed Treatment + Main	÷ F	T - + T-	3.3	3.4	6.1	6.6	15.1	63.7	45.5	9.3	10.2	12 0
field	1 10	11 - 17	(1.9) ^{d-f}	(2.0) ^e	(3.5) ^{ef}	(3.8) ⁱ	(8.8) ^{b-d}	(3.9) ^{ab}	(27.9) ^{a-c}	(5.4) ^b	(3.6) ^{h-j}	40.4
	Ļ	T , + T,	2.6	4.3	8.8	11.2	16.0	60.9	42.1	7.4	10.6	111
	11.	11 - 18	(1.5) ^f	(2.5) ^{de}	(5.1) ^{cd}	(6.5) ^{gh}	(9.3 ^{bc})	(5.1) ^{ab}	(24.3) ^{a-d}	(4.3) ^{b-e}	(4.0) ^{e-g}	41.1
	,,T	Τ. + Τ.	3.4	4.3	6.3	8.2	11.8	54.5	32.2	8.7	9.1	010
Nursery + Main field	21.1	13 1 1/	(2.0) ^{d-f}	(2.5) ^{de}	(3.6) ^{ef}	(4.7) ⁱ	(6.9) ^f	(3.8)⊳	(18.9) <mark>ec</mark>	$(5.0)^{bc}$	(3.3) ^j	13.4
	Ļ	T,+ T,	3.4	4.8	9.2	10.3	12.0	57.8	40.7	7.9	10.0	0.04
	? -		(1.9) ^{d-f}	(2.7) ^{c-e}	(5.3) ^c	(5.9) ^h	(6.9) ^f	(4.3) ^{ab}	(23.6) ^{b-e}	$(4.5)^{bc}$	(3.7) ^{9-j}). F
Introated control	, T	Hatroatod Control	9.5	7.8	18.6	31.6	31.8	69.9	50.9	12.7	17.9	0
חווו במובח רחווו חו	1 14		$(5.5)^{a}$	(4.5) ^a	(10.8) ^a	(18.6) ^a	(18.9) ^a	$(5.0)^{ab}$	(28.8) ^a	(7.3) ^a	(8.00) ^a	0.0
LSD (P=0.05)			0.6964	0.8819	1.2754	1.1679	1.0255	1.6904	4.7469	1.7	0.3273	
Figures in the narenthesis are	*Arcsine and	#Atken's transformed values Means with	hin a column 1	followed hv se	ame alphahe	t are not sign	hificantly diffe	rent from ea	ich other (I SI	D P<0.05)		

. 2 – Entomology
10/
ort 2023, 1
lep
Progress k
Annual
ICAR-IIRR

2.41

Table 2. Field efficacy (Treatment*Location)	of granular	insecticides on stem t	oorer in ter	ms of dea	d hearts at	t different lo	cations al	nd across t	the locati	suo	
						De	ad hearts	(%)			
Crop Stage		Treatment				Location*				Trea	:ment* ation#
			ADT	ABP	СНР	GNV	JDP	MTU	MGL	Mean	%ROC
Seed Treatment	Ļ	Thiamethoxam 25%	3.0	5.2	2.7	15.3	8.7	4.3	2.1	2.9	46 2
alone	-	MG	(1.7) ^{bc}	(3.0) ^b	(1.6) ^b	d(8.8)	(5.0)b	(2.4) ^{a-c}	(1.2) ^b	(2.2) ^b	10.4
	T_2	Carbofuran 3% CG	3.1 /1 8\bc	4.9 (2 8\b	3.1 (1 8)b	13.8 /7 0\c	7.5 (4.4\b	4.1 (2 3) _{a-c}	2.1 (1.2\b	2.7 (2.2)bc	49.6
(15 DAS/one week	ŀ		3.3	4.1	1.8	11.9	4.2	11.7	2.5	2.6	T C L
before	13	FIPRONII U.3 GK	(1.9) ^{bc}	(2.3) ^{b-d}	(1.0) ^{cd}	(6.8)d	(2.4) ^{c-e}	(6.7) ^a	(1.5) ^b	(1.9) ^{cd}	52.4
transplantation)	Τ₄	Chlorantraniliprole 0.4 GR	3.3 (1.9) ^{bc}	3.3 (1.9) ^{de}	1.3 (0.8) ^{de}	10.4 (6.0)∘	6.4 (3.7) ^{bc}	3.2 (1.8)⁰	2.0 (1.1) ^b	2.1 (1.6) ^{de}	60.4
	T5	Carbofuran 3% CG (Check2)	7.6 (4.4) ^a	4.1 (2.4) ^{b-d}	2.5 (1.4) ^{bc}	9.5 (5.5) ^{ef}	2.2 (1.3) ^{de}	4.4 (2.5) ^{a-c}	2.0 (1.1) ^b	2.4 (2.1) ^{bc}	54.8
Moin Bald close	Т ₆	Fipronil 0.3 GR	4.2 (2.4) ^b	4.0 (2.3) ^{b-d}	1.5 (0.9) ^{de}	8.4 (4.8) ^{fg}	2.9 (1.7) ^{de}	8.8 (5.0) ^{a-c}	2.6 (1.5) ^b	2.2 (1.7) ^{de}	59.2
(20-25 DAT)	T_7	Chlorantraniliprole 0.4 GR	3.3 (1.9) ^{bc}	4.5 (2.6) ^{b-d}	1.4 (0.8) ^{de}	7.6 (4.3) ^{gh}	3.3 (1.9) ^{de}	4.7 (2.7) ^{a-c}	2.1 (1.2) ^b	2.2 (1.7) ^{d-f}	59.1
	Т ₈	Cartap hydrochloride 4%	6.6 (3.8)ª	3.8 (2.2) ^{b-e}	2.6 (1.5) ^{bc}	11.9 (6.8)d	6.3 (3.7) ^{bc}	3.4 (1.9) ^{bc}	2.1 (1.2) ^b	2.7 (2.2)b	49.3
		GR	(0.0)	\/	(0.1)	10.01	1	(0.1)	//	()	
	T ₉	$T_1 + T_6$	4.1 (2.4)⊳	3.3 (1.9) ^{de}	1.8 (1.0) ∞	3.9 (2.3) ^j	2.4 (1.4) ^{de}	3.3 (1.9)₀₀	2.5 (1.4) ^b	1.6 ^{e-g} (1.5)	71.2
Seed Treatment + Main field	T ₁₀	$T_1 + T_7$	2.5 (1.4) ^c	2.3 (1.3)e	1.0 (0.5) ^{de}	3.3 (1.9)	2.2 (1.3) ^{de}	4.4 (2.5) ^{a-c}	1.5 (0.9) ^b	1.2 (1.0) ^h	6.77
	T ₁₁	T1+T8	2.1 (1.2)∘	3.8 (2.2) ^{b-e}	1.7 (1.0)∞	6.1 (3.5) ⁱ	4.8 (2.8)∞	3.2 (1.8) ^{a-c}	2.1 (1.2) ^b	1.7 (1.4) ^{e-g}	69.1
	T ₁₂	$T_3 + T_7$	3.0 (1.7)₀₀	3.1 (1.8) ^{de}	0.8 (0.5) ^e	6.9 (3.9) ^{hi}	2.1 (1.2) ^e	3.9 (2.2) ^{а-с}	2.1 (1.2) ^b	1.5 (1.2) ^{gh}	71.4
Nursery + Main neig	T ₁₃	T ₃ + T ₈	2.5 (1.4) ^c	3.4 (2.0)∘-e	1.3 (0.8) ^{de}	6.3 (3.6) ^{hi}	4.5 (2.6)≎e	5.2 (3.0) ^{a-c}	1.8 (1.0) ^b	1.7 (1.4) ^{fg}	68.0
Untreated control	T ₁₄	Untreated Control	7.8 (4.5) ^a	8.5 (4.9) ^a	6.2 (3.6)ª	18.2 (10.5 ^{) a}	20.1 (11.8) ^a	11.4 (6.6) ^{ab}	9.8 (5.7) ^a	5.4 (5.0) ^a	0.0
LSD (P=0.05)			0.8114	0.9567	0.501	0.7891	1.5067	4.6958	0.7	0.3258	
Figures in the parenthesis :	are *Arcsine a	nd #Atken's transformed vi	alues. Mean	s within a co	lumn followe	ed by same al	ohabet are r	not significan	tly different	from each o	ther (LSD, P<0

2.42

Table3. Field effic.	acy of gra	nular insecticides on ster	m borer in tern	ns of white ea	Irs at different	locations and	across the loca	tions (Treatmer	nt*Location)		
							White ears (%)				
Crop Stage	Treatme	nt				Location*				Treat	ment* tion#
			ADT	ABP	CHP	GNV	ADL	MTU	MGL	Mean	%ROC
Seed Treatment	Ļ	Thiamethoxam 25%	3.5	12.2	9.6	3.5	16.3	12.5	12.6	4.7	733
alone	-1	MG	(2.0) ^c	(7.1) ^{b-d}	(5.5) ^a	(2.0) ^c	(9.5) ^{bc}	(7.2) ^{b-d}	(7.3) b	(2.7) ^{de}	0.00
	F	Carbofuran 3% CG	3.9	14.2	7.2	3.9	14.5	15.9	10.8	4.8	VCV
Nursery alone	12	(Check1)	(2.2) ^{bc}	(8.4) ^{ab}	(4.2) ^{ab}	(2.2) ^{bc}	(8.4) ^{cd}	(9.2) ^{a-d}	(6.2) ^{bc}	(2.7) ^{de}	42.4
(13 UAS /one	Υ,	Einronil () 3 CD	3.6	10.0	7.4	3.6	15.6	19.6	11.0	4.6	77.7
Tranchlan.	13		(2.1) ^c	(5.8) ^{b-e}	(4.2) ^{ab}	(2.1) ^c	(9.1) ^{b-d}	(11.5) ^a	(6.4) ^{bc}	(2.6) ^{de}	+. +
tation)	Ļ	Chlorantrani-liprole	4.2	13.0	7.5	4.2	15.5	13.0	12.1	5.0	40 S
	14	0.4 GR	(2.4) ^{bc}	(7.6) ^{a-c}	(4.3) ^{ab}	(2.4) ^{bc}	(0.0) ^{b-d}	(7.5) ^{b-d}	d (7.0) b	(2.8) ^{de}	
	Ļ	Carbofuran 3% CG	5.6	9.1	7.4	5.6	16.2	15.1	9.8	5.9	20.1
	15	(Check2)	(3.2) ^{bc}	(5.3) ^{b-e}	(4.2) ^{ab}	(3.2) ^{bc}	(9.4) ^{bc}	(8.7) ^{a-d}	(5.7) ^{b-d}	(3.4) ^{bc}	1.07
	Ļ	Einronil () 3 CD	6.1	6.5	6.9	6.1	17.6	17.6	9.6	6.1	7. JC
Main field alone	9		(3.5) ^{ab}	(3.8) ^{de}	(4.0) ^{ab}	(3.5) ^{ab}	(10.2) ^b	(10.2) ^{a-d}	(5.5) ^{b-d}	(3.5) ^b	20.1
(20-25 DAT)	Ļ,	Chlorantrani-liprole	5.8	7.5	7.0	5.8	16.9	16.1	6.0	5.9	28 R
		0.4 GR	(3.3) ^{bc}	(4.3) ^{c-e}	(4.0) ^{ab}	(3.3) ^{bc}	(9.9) ^{bc}	(9.3) ^{a-d}	(3.4) ^{cd}	(3.4) ^{bc}	0.04
	Ļ	Cartap hydrochloride	5.4	7.8	5.4	5.4	16.6	18.8	6.5	5.8	35.1
	8	4% GR	(3.1) ^{bc}	(4.6) ^{c-e}	(3.1) ^{bc}	(3.1) ^{bc}	(9.6) ^{bc}	(11.0) ^{ab}	(3.7) ^{cd}	(3.1) ^{b-d}	
	T,	Τ., Τ.	5.0	7.8	5.4	5.0	16.4	15.1	10.6	5.0	30 E
	6 1	11 + 16	(2.8) ^{bc}	(4.5) ^{c-e}	(3.1) ^{bc}	(2.8) ^{bc}	(9.5) ^{bc}	(8.7) ^{a-d}	(6.1) ^{bc}	(2.9) ^{с-е}	0.00
Seed Treatment	Τ,,	T, - T-	4.9	5.9	5.2	4.9	16.8	18.4	4.7	4.8	417
+ Main field	1 10	11 - 1 /	(2.8) ^{bc}	(3.4) ^e	(3.0) ^{bc}	(2.8) ^{bc}	(9.8) ^{bc}	(10.6) ^{a-c}	(2.7) ^d	(2.8) ^{de}	· · · ·
	Ļ	T.+ T.	4.5	8.3	5.4	4.5	17.4	17.4	8.0	4.7	737
	11	11 1 18	(2.6) ^{bc}	(4.8) ^{c-e}	(3.1) ^{bc}	(2.6) ^{bc}	(10.1) ^b	(10.1) ^{a-d}	(4.6) ^{b-d}	(2.7) ^{de}	1.01
	F	F -	4.4	9.1	5.1	4.4	13.3	12.3	6.4	4.3 ^e	V 7 V
Nursery + Main	1 12	13 T 17	(2.5) ^{bc}	(5.2) ^{b-e}	(2.9) ^{bc}	(2.5) ^{bc}	d (7.7)	(7.1) ^{cd}	(3.7) ^{cd}	(2.5)	t.
field	Τ,,	T, ± T,	4.2	10.3	4.1	4.2	13.6	11.8	9.9	4.3	7 7
	1 13	13 - 18	(2.4) ^{bc}	(6.1) ^{b-e}	(2.4) ^c	(2.4) ^{bc}	b (7.9) d	(6.8) d	(5.7) ^{b-d}	(2.5) ^e	
Untreated	Ч,	Introated Control	8.5	18.5	5.4	8.5	30.8	14.9	24.0	8.8	00
control	1 4	טוווקמופט טטוויט	(4.9) ^a	(10.8) ^a	(3.1) ^{bc}	(4.9) ^a	(18.1) ^a	(8.6) ^{a-d}	(14.0) ^a	(4.8) ^a	>
LSD (P=0.05)			1.4639	3.3257	1.6038	1.4639	1.4511	3.7946	3.1327	0.5197	
Figures in the parenth	esis are *An	csine and #Atken's transforme	ed values. Means	within a columi	1 followed by sar	he alphabet are no	ot significantly diffe	erent from each oth	her (LSD. P<0.05)		

– Entomology
\mathbf{a}
Vol.
2023,
Report
Progress
Annual
ICAR-IIRR

			Damaged leave	s (%)	
Crop Stage	Treatm	ent	Damaged leaves (%)	%ROC	No. of spiders per hill
Seed Treatment alone	T,	Thiamethoxam 25% WG	10.3 (6.8) bc	25.9	7.5 (11.15) ∞
	T ₂	Carbofuran 3% CG (Check1)	9.8 (6.6) ^{b-d}	29.4	7.4 (11.07)⊳c
Nursery alone (15 DAS/one week before transplantation)	Τ ₃	Fipronil 0.3 GR	10.0 (6.7) ^{b-d}	27.5	8.1 (11.53)⊳c
	T4	Chlorantraniliprole 0.4 GR	9.8 6.7) ^{b-d}	29.5	7.4 (11.07) ^{cd}
	T5	Carbofuran 3% CG (Check2)	10.7 (7.1) ^b	22.8	8.0 (11.30) ^{b-d}
	Т ₆	Fipronil 0.3 GR	9.3 (6.5) ^{b-e}	33.0	7.5 (11.18) ^{b-d}
	T7	Chlorantraniliprole 0.4 GR	7.9 (6.0) ^{ef}	43.0	7.5 (11.09)∞
	Т ₈	Cartap hydrochloride 4% GR	8.0 (5.8) ^f	42.4	7.3 (11.13) ^{cd}
	T ₉	T ₁ + T ₆	8.2 (6.2)ċ-f	40.6	9.3 (11.32)⊳-d
Seed Treatment + Main field	T ₁₀	T ₁ + T ₇	7.1 (5.8) ^f	48.5	13.3 (12.12)ª
	T ₁₁	T ₁ + T ₈	7.2 (5.8) ^f	48.1	7.3 (11.19) ^{b-d}
Ling view	T ₁₂	T ₃ + T ₇	6.9 (5.7) ^f	50.2	6.9 (11.11)∞
Nursery + Main Tield	T ₁₃	T ₃ + T ₈	7.9 (6.1) ^{d-f}	43.0	6.7 (10.92) ^d
Untreated control	T ₁₄	Untreated Control	13.8 (7.9) ^a	0.0	9.4 (11.62)⁵
LSD (P=0.05)			0.6582		0.4637
Figures in the parenthesis are At	tken's tra	nsformed values. Means within a c	column followed by sam	ne alphabet a	are not signific

Table 5. Effect of g	ranular	insecticides on yield in ric	e at differe	ent locatio	ns and ac	ross the lo	ocations (1	reatment*	'Location)			
							Grain	/ield (Kg/ha				
Crop Stage		Treatment				Loca	tion				Treatmer Locatio	lt* n
			ADT	ABP	СНР	GNV	dQL	MTU	PTB	MGL	Mean	%IOC
Seed Treatment alone	T,	Thiamethoxam 25% WG	2306.7 ^{bc}	4803.2 ^{b-d}	3586.7 ^h	3670.7 ^k	4237.3 ^d	4151.5 ^{d-f}	2321.7 ^{ab}	1702.4 ^e	3347.5(6.7) ^f	28.0
Nursery alone	T_2	Carbofuran 3% CG (Check1)	2686.7 ^{ab}	4666.7 ^{cd}	3658.3 ^{gh}	4404.3i	4578.7 ^{b-d}	5162.0 ^{ab}	2261.7 ^{ab}	1865.1 ^{cde}	3660.4(7.2) ^e	39.9
(15 DAS/one week	T ₃	Fipronil 0.3 GR	2723.3 ^{ab}	4946.0 ^{b-d}	3741.7 ^{fg}	4808.3 ⁱ	4616.0 ^{a-d}	4468.4 ^{b-f}	2228.3 ^{ab}	1857.1 ^{de}	3673.7(7.2) ^e	40.4
perore transplantation)	T_4	Chlorantraniliprole 0.4 GR	2583.3 ^{ab}	5219.0 ^{a-c}	3850.0ef	5215.7 ^h	4461.3cd	4539.3 ^{b-f}	2408.3 ^{ab}	1726.2 ^e	3750.4(7.2) ^e	43.4
	Τ5	Carbofuran 3% CG (Check2)	2463.3 ^{ab}	4858.7 ^{b-d}	4025.0 ^{cd}	5847.3f ^g	4788.0 ^{a-c}	4331.3ª	2220.0 ^{ab}	2309.5ª	3855.4(7.5) ^{b.e}	47.4
Main fiold along	T ₆	Fipronil 0.3 GR	2623.3 ^{ab}	5509.5а- °	4050.0 ^{cd}	6105.3 ^{ef}	4545.3 ^{b-d}	5338.2ª	2560.0 ^{ab}	2188.5 ^{ab}	4115.0(7.9) ^{ab}	57.3
(20-25 DAT)	T7	Chlorantraniliprole 0.4 GR	2510.0 ^{ab}	4833.3 ^{b-d}	4133.3 ^{bc}	6216.3 ^{de}	4757.3 ^{a-c}	4695.7 ^{a.e}	2678.3ª	2222.2 ^{ab}	4005.9(7.8) ^{bc}	53.1
	T ₈	Cartap hydrochloride 4% GR	2725.0 ^{ab}	5007.9 ^{b-d}	3933.3 ^{de}	5716.39	4768.0ª-c	3877.4 ^f	2535.0 ^{ab}	1924.6 ^{c-e}	3811.0(7.5) ^{cde}	45.7
H	T ₉	T ₁ + T ₆	2941.7ª	5401.6 ^{a-c}	4233.3 ^{ab}	7246.3ª	4861.3 ^{a-c}	4881.0 ^{a-d}	2018.3 ^b	2063.5 ^{b-d}	4205.9(7.9) ^{ab}	60.8
Seed Ireatment +	T ₁₀	$T_1 + T_7$	2816.7 ^{ab}	6025.4ª	4325.0 ^{ab}	7351.0ª	4925.3 ^{ab}	4923.6 ^{a-c}	2510.0 ^{ab}	2103.2 ^{a-c}	4372.5(8.2) ^a	67.2
	T ₁₁	T ₁ + T ₈	3016.7ª	5290.5 ^{a-c}	4166.7 ^{bc}	6457.0cd	4866.7 ^{a-c}	4076.2 ^{ef}	2341.7 ^{ab}	2004 ^{b-d}	4027.4(7.8) ^{bc}	54.0
Nimona + Moin field	T ₁₂	$T_3 + T_7$	2641.7 ^{ab}	5657.1 ^{ab}	4341.7ª	6830.0 ^b	5020.0ª	2341.7 ^{gh}	2581.7ª	1904.8 ^{c-e}	3914.9(7.7) ^{bc}	49.7
	T ₁₃	T ₃ + T ₈	2591.7 ^{ab}	5250.8 ^{a-c}	4133.3 ^{bc}	6672.7bc	4900.0 ^{ab}	2961.79	2641.7ª	1884.9 ^{c-e}	3879.6(7.6) ^{bod}	48.3
Untreated control	T ₁₄	Untreated Control	1766.7°	4225.4 ^d	2516.7i	3028.0 ⁱ	∋809.3e	1843.3ª	2388.3 ^{ab}	1349.2f	2615.9(5.4) ^g	0.0
LSD (P=0.05)		LSD (0.05)	615.86	866.73	148.92	266.51	419.85	745.98	546	244.24	182.37	
Figures in the parenthesis ¿	are Atken'	s transformed values. Means within a	column followed	d by same alph	nabet are not	significantly dit	fferent from ea	ch other (LSD	, P<0.05).			

2.3.2. Prophylactic management of rice hoppers in southern black streak virus disease affected areas

The trial was conducted at four locations *viz.*, Ludhiana, Kaul, Chatha and Pantnagar. Experiment at Kaul was vitiated due to heavy rains during the cropping season. Pest incidence at Chatha was negligible, hence not considered for analysis. The findings at two locations, Pantnagar and Ludhiana are presented here under.

Treatments:

Module 1: Protected

Time of application	Treatment
Seed treatment	Thiamethoxam 25% WG @4g/kg seed
One week before transplanting in nursery	Neem Azal 1% EC @ 2 ml/litre of water
15-20 days after transplanting	Flupyrimin 2% GR @ 6.25 kg/ha
50-55 days after transplanting	Dinotefuran 20% SG @ 200 g/ha

Module 2: Protected

Time of application	Treatment
One week before transplanting in nursery	Flupyrimin 2% GR @ 6.25 kg/ha
15-20 days after transplanting	Pymetrozine 50% WG @ 300 g/ha
50-55 days after transplanting	Triflumezopyrim 10% SC @ 236 ml/ha

Module 3: Unprotected (untreated control)

Results:

Pantnagar:

The incidence of vector pests namely, brown planthopper (BPH) and whitebacked planthopper (WBPH) was significantly lower as compared to the untreated control. (Table 1). BPH population was significantly lower in Module-2 (41.1/hill) and Module-1 (43.8/hill) as compared to the untreated control (68.1/hill). With respect

to WBPH, also similar effects were observed, significantly lower population was recorded in Module-1 (8.8/hill) and Module -2 (9.0/hill) as compared to the untreated control (16.2/hill). Efficacy against yellow stem borer also was recorded. Module-2 was most effective with significantly lower dead hearts (DH) (14.3%) followed by Module-1 (14.3%) as compared to the untreated control (19.8%). However, with respect to white ears (WE), Module-1 was most affective with significantly lower WE (13.7%) followed by Module-2 (20.9%) as compared to the untreated control (34.5%). With respect to spiders there was no adverse impact of the insecticides on their abundance. Significantly higher yield (5375 Kg/ha) was recorded in Module-1 followed by Module-2 (5155 Kg/ha) as compared to the untreated control (4533 Kg/ha).

Ludhiana:

In module-2 significantly lower planthoppers were recorded (27.5/hill) followed by Module-1 (30.4/hill) as compared to the untreated control (54.3/hill). However, spider population was significantly lower in the module 1 and 2 as compared to the untreated control. Yield was significantly higher in Module-2 (6790 kg/ha) followed by module-1 (6757 kg/ha) as compared to the untreated control (5862 kg/ha) (Table 2).

The two tested modules were effective and resulted in 36.0 to 49.0 per cent reduction in planthopper population over the untreated control. At Ludhiana, Module-2 was superior with 49.0 per cent reduction in the planthopper population. However, during the crop season, southern black streak virus disease was not recorded in the experimental locations. Application of insecticides resulted in significant gain in grain yield. At Pantnagar, Module -1 was superior with 18.6 per cent yield increase (5375 Kg/ha) over the untreated control (4533 Kg/ha). At Ludhiana also, both the modules showed similar positive effect on grain yield and Module-2 resulted in 15.8 per cent higher grain yield (6790 Kg/ha) over the untreated control (5862 Kg/ha).

Treatment	BPH* (No. /10h)	%RO C	WBPH* (No. /10h)	%RO C	%DH **	%RO C	%WE **	%ROC	Spider s* (No. /10h)	Yield (Kg/ha)	%IOC
Module-1	43.8 (6.1)⁵	35.8	8.8 (2.4) ^b	45.8	14.3 (8.3) ^b	27.5	13.7 (7.9)⁰	60.3	5.3 (2.2)ª	5375ª	18.6
Module-2	41.1 (5.8) ^b	39.7	9.0 (2.4) ^b	44.6	8.8 (5.1)⁰	55.7	20.9 (12.1) ^b	39.3	5.9 (2.3)ª	5155ª	13.8
Module-3 (Untreated control)	68.1 (7.8)ª		16.2 (3.6)ª		19.8 (11.6)ª		34.5 (20.2) ^a		6.2 (2.4)ª	4533 ^b	
CD (0.05)	0.275		0.618		1.653		3.528		NS	473.97 6	

Table 1. Efficacy of insecticides on brown planthopper, whitebacked planthopper, yellow stem borer, spiders and yield at Pantnagar.

Figures in the parenthesis are square root (*) and arcsine (**) transformed values. Means followed by the same alphabet

are significantly not different from each other. ROC- reduction over control IOC-increase over control

Table 2. Efficacy of insecticides against planthoppers, spiders and yield at Ludhiana.

Treatment	Planthoppers* (No. /10h)	%ROC	Spiders* (No. /10h)	%IOC	Yield (Kg/ha)	%IOC
Module-1	30.4	44.1	8.3	-31.3		15.3
Modulo 1	(9.6) ^b		(2.9) ^b		6757ª	
Modulo 2	27.5	49.4	8.3	-31.3		15.8
Woulle-2	(9.0) ^c		(2.9) ^b		6790ª	
Module-3	54.3		12			
(Untreated control)	(13.7) ^a		(3.5) ^a		5862 ^b	
CD (0.05)	0.34		0.275		10.395	

Figures in the parenthesis are square root (*) transformed values. Means followed by the same alphabet are significantly not different from each other. ROC- reduction over control IOC-increase over control

2.4 Optimum Pest Control Trial (OPCT)

The trial was constituted to evaluate the performance of the identified multiple pest resistant rice cultures under protected and unprotected conditions against the pest damages in a location. This is the second year of conduct of this trial. The trial was conducted at 10 locations *viz.*, Ambikapur, Chinsurah, Gangavati, IIRR, Kaul, Ludhiana, Pattambi, Raipur, Warangal, and Titabar. Nine insect pest resistant cultures *viz.*, V1-CUL M9, V2-CR 3006-8-2, V3-CR Dhan 317, V4-Akshaydhan PYL, RP5587-273-1-B-B-B, KMR 3, Suraksha, W1263, RP2068 -18-3-5 along with the susceptible check TN1 were raised in 3 replications in a split plot design with main treatments being protected and unprotected conditions and varieties as sub treatments. Observations on pest incidence were recorded along with the grain yield. Insecticide treatments were taken up based on the intensity of the damage. At Gangavati, Chinsurah, Pattambi, Warangal, and Ludhiana observations were recorded before and after imposition of insecticide treatments. The general information pertaining to the trial is given in Table 2.4.1.

The reaction of test entries across locations to gall midge (Table 2.4.2), stem borer dead heart damage (Table 2.4.3), stem borer white ear damage (Table 2.4.4), leaf folder (2.4.5) and the grain yield (2.4.6) are tabulated pest wise and discussed location wise.

Ambikapur: Observations on gall midge (% SS) and stem borer damage (%DH) at 34 DAT, 48 DAT and 67 DAT were recorded in the trial. SS (%) was significantly low in Cul M9, Suraksha, W1263 and Akshayadhan PYL and RP5587-273-1-B-B-B at 67 DAT. Dead heart (%) damage was significantly low in KMR3, W 1263 and Suraksha at 67 DT. No significant difference in silver shoot and stem borer dead heart damage was observed between protected and unprotected treatments.

Chinsurah: Incidence of stem borer and leaf folder were recorded in this trial. Dead heart damage (35DAT), white ear damage and leaf folder damage (77DAT) were significantly lower in protected treatments. Among the varieties tested, RP 2068-18-3-5 recorded significantly lower dead hearts damage followed by RP5587-273-1-B-B-B as compared to other entries. Cul M9, CR Dhan317, Suraksha and RP 2068-18-3-5 had significantly low white ear damage. Suraksha, W1263 and CR 3006-8-2 had significantly lower leaf folder damage at 77 DAT.

Gangavathi: Incidence of gall midge, stem borer, planthoppers and leaf folder along with counts on spiders, mirids bugs, damsel and dragonflies were observed at this location. Granular application had significantly reduced the gall midge damage in the protected treatments (8.08%SS) as compared to unprotected treatments (10.69%SS). Suraksha (5.3%SS) and W1263 (5.6%SS) had significantly lower damage as compared to other test entries.

Stem borer damage was significantly higher in unprotected treatments (10.03% DH and 13.77%WE) as compared to the protected (8.01%DH and 9.68% WE) treatments. Suraksha, and W1263 recorded significantly lower SBDH, SBWE & LFDL damage while KMR3 had lower SBDH damage. Planthopper population (375.6 hoppers/10 hills) was recorded and treatments had no effect on the population.

Location	Common name	Date of insecticide/ fungicide application	Time of application	Observations recorded
Ambilkapur D/S 07-07-2023 D/P 04-08-2023	Azoxystrobin +tebuconazol	two sprays for blast disease management but not recovered		GM, SBDH, * Suraksha and W 1263 were severely damaged by blast disease. (2) Gall midge infestations were very less due to lowland field situation.
Chinsurah D/S 03-07-2023 D/P 28-07-2023	Cartap hydrochloride	21.07.23 & 07.09.23	7 days before transplanting and at 40 DAT	SBDH, SBWE, LFDL
Gangavathi D/S 13-09-2023 D/P 10-10-2023	Fipronil 0.3 GR	10.11.2023	30 DAT	SS, SBDH, SBWE, LFDL, BPH and WBPH. Mirid bugs, spiders,& other Natural enemy counts;Incidence of brown spot and false smut recorded
	Carbofuran	11-09-2023	34 DAT	
ICAR-IIRR D/S 14-07-2023 D/P 07-08-2023	Twice application of herbicide	Pretilachlor 50%EC herbicide applied on 13/08/2023.	20-09-2023 (Ammonium salt of glyphosate 71%S.G	SBDH, SBWE, spiders, coccinellids
Kaul D/S 01-07-2023 D/P 14-08-2023	Cartap Hydrochloride Flubendamide Flubendamide Copper Oxychloride Streptocycline	For leaf folder For stem borer For stem borer		LFDL, SBDH,
Ludhiana D/P 29-06-2023 D/P 27-07-2023	Fame 480 SC @ 20 ml/acre Osheen 20 SG@ 80 g/acre	12-09-2023 25-09-2023	47 DAT 60 DAT	SBDH, SBWE, LFDL, PH, Spiders
Pattambi D/P 31-07-2023		20.08.23,10.09.23, 26.9.23		SS, SBDH, SBWE, LF, WM, spiders, damsel flies & Coccinellids
Raipur D/S 20-07-2023 D/P 19-08-2023	Spraying of Fipronil was started from 20.09.2023 and it was repeated in 15 days interval for four times.	20.09.2023, 06.10.2023, 21.10.2023, 07.11.2023	32 DAT, 48 DAT, 63 DAT, 80 DAT	SBDH, SBWE, Hispa , Leaf folder, WMD and Planthopper
Titabar D/S 13-07-2023 D/P 12-08-2023	Chlorantraniliprole 18.5 SC	00.40.0000	50 DAT & 65 DAT	DP, SS, SBDH, SBWE, LFDL, Caseworm, Mirid bugs, spiders, Dragonflies/Damselfly, Coccinellids
vvarangal D/S 22-07-2023 D/P 23-08 2023	Chlorantraniliprole	01-11-2023		SS, SBUH, LF SBWE

Table 2.4.1 General information pertaining to OPCT trial, Kharif 2023

Mirid bugs (39.28/ 10 hills), dragon flies and damsel flies ($9.4 \pm 0.47/10$ hills) in protected treatment were slightly less as compared to unprotected treatment (12.2 \pm 0.49 dragon flies/10 hills and 42.7bugs/10 hills). Spiders were observed in both protected (20.92 /10 hills and unprotected (18.74 /10 hills) treatments. Suraksha recorded higher grain yield followed by W1263.

IIRR: Stem borer white ear damage was recorded in the trial under infested conditions. CR Dhan 317 (24.6% WE) and RP 5587-273-1- B-B-B (29.9% WE) had significantly lower WE damage as compared to other test entries. No significant difference in damage was observed between protected and unprotected treatments where a singular granular application was given. Spiders, coccinellids and grasshoppers were recorded but treatments had no significant difference in their numbers. Grain yield was significantly high in protected plots (6168kg/ha) as compared to unprotected plots (5541kg/ha) and the interaction effects were significant.

Kaul: Leaf folder incidence was evident but insecticide treatments were not statistically significant. W 1263, Suraksha and CR3006-8-2 had significantly lower SBDH damage.

Ludhiana: Incidence of stem borer, leaf folder and counts of natural enemies *viz.*, spiders, dragon and damsel flies were recorded at this location. Pre-count and postcount of pest damages before and after an insecticide spray were recorded. SBDH and SBWE were significantly low in the insecticide treated plots (2.9 %DH, 5.01 %WE) as compared to unprotected control (6.4%DH, 6.4% WE). CR Dhan 3006-8-2, CR Dhan 317, 1263, Suraksha, KMR3 and CR Dhan 317 recorded significantly lower SBDH. KMR3, CR Dhan 3006-8-2 and CR Dhan 317 had lower white ear damage as compared to other test entries. Leaf folder damage was significantly low in W1263, RP 2068 and Suraksha. The insecticide treated plots had lower damage as compared to untreated plots. Interaction effects were also significant (Table 2.4.5). Treatments had no effect on the spider population. The grain yield in the protected plots (3215kg/ha) was significantly higher than that of the unprotected plots (2172kg/ha). Among the test entries, CR 3006-8-2, RP5587-273-1-B-B-B, and KMR3 had higher grain yield as compared to other test entries.

Raipur: In the protected treatments spraying of Fipronil 0.3%SC was taken up at 15 days interval for four times starting from 30 DAT. Observations were recorded on the incidence of gall midge, stem borer, planthoppers, case worm, rice hispa and leaf folder. Despite 4 sprays of insecticidal application SBDH and SBWE did not differ significantly between the insecticide treated plots (23.60 % DH, 22.53 % WE and unprotected plots (21.72% DH, 21.11%WE). Cul M9, KMR3 CR Dhan 317 and RP5587-273-1-B-B-B had significantly lower WE damage as compared to other test entries. No significant difference in hispa and leaf folder damage was observed among the varietal treatments. Counts on natural enemies like ground beetles, coccinellids, rove beetles, spiders were recorded. CR Dhan 317, KMR3, CR3006-8-2 recorded higher grain yield among the test entries.

Pattambi: Observations on silver shoots, dead hearts, white ears and leaf folder damaged leaves were recorded in this trial. Silver shoot damage was recorded at 35 DAT, 45 DAT, 55 DAT and 85 DAT but the varietal treatments had significant effect only at 55 DAT. W 1263 had significantly lower damage at all dates of observation though there was heavy incidence at 85 DAT. Dead heart damage was recorded but it was not statistically significant across the varieties or insecticidal treatments. But the white ear damage was significantly low in the unprotected treatments as compared to protected treatments. This was attributed to incessant rain followed by water logging in the protected treatments. Among the varieties, RP2068-18-3-5 had the least damage. Leaf folder damage was significantly lower in CuL M9, W1263 and Suraksha at 45, 55, 75 and 85 DAT. The damage was significantly lower in insecticide treated plots as compared to untreated plots. Grain yield was significantly high in CR3006-8-2 and low in Suraksha.

Warangal: Observations were recorded on the incidence of gall midge before and after the insecticide treatments. Granular application alone reduced the silvr shoot damage significantly. W1263 (*Gm1*), CUL M9, Suraksha (*Gm11*), Akshyadhan PYL, RP2068- 18- 3-5 (*gm3*) recorded significantly lower silver shoot damage in all the four observations as compared to other entries. Dead heart damage was significantly different among varieties at 61 DAT and 85 DAT. KMR3 and CR Dhan 317 recorded significantly lower dead heart damage compared to other test entries. CR Dhan 317, Cul M9 and RP5587-273-1-B-B-B, had significantly lower white ear damage whereas insecticide application had no effect. CR Dhan 317, Akshyadhan PYL, RP5587-273-1-B-B-B, and KMR3 had significantly higher grain yield.

Titabar: Incidence of gall midge, stem borer, leaf folder and case worm were reported from this location. Two sprays of Chlorantraniliprole were given at this location. Silver shoot damage was significantly low in the protected (4.49%SS) plots as compared to unprotected plots (14.31% SS). Silver shoot damage in test entries (8.01-10.88% SS) was not significantly different. The dead heart and white ear damages were significantly low (6.01 % DH and 8.13 % WE) in the protected plots as compared to unprotected plots (11.5% DH and 19.4% WE). The mirid bug population (0.48/10 hills), and dragonflies (1.2 \pm 0.12 flies/10 hills) were significantly low as compared to untreated control (1.8 mirid mugs /10 hills and 2.5 \pm 0.14 dragon flies /10 hills).

Reaction across locations: In this trial, 9 insect pest resistant cultures were evaluated at 10 locations along with susceptible check TN1 under both protected and unprotected conditions. At TTB, GNV and LDN, CUL M9 was not tested as it is a long duration variety. At IIRR and Pattambi it did not flower.

Silver shoot damage by gall midge was reported from 5 locations *viz.*, Pattambi, Ambikapur, Gangavati, Warangal and Titabar at different dates after transplantation. Observations revealed that across locations, the silver shoot damage was significantly lower (1.43-2.71% SS) in W1263 (*Gm1*), CUL M9, Suraksha (*Gm11*), followed by Akshayadhan PYL, as compared to other varieties (F

val, 10.00 at 9 df, P =0) where the damage ranged from 6.3-9.61% SS. These entries were possessing different gall midge resistance genes and can be utilized as donors in the breeding programs for development of gall midge resistant varieties for the endemic locations. Mean silver shoot damage was significantly lower in protected treatments as compared to unprotected treatments (F val 12.49 P= 0.0123).

Dead heart damage by stem borer was reported from 9 locations at different dates of observations (13 Nos) and it was significantly lower in insecticide treatments at 6 locations as compared to unprotected control (F val 22.66, P val0.0005). CUL M9, W1263, and Suraksha recorded a significantly lower damage across locations (0.9-2.13%DH) followed by CR 3006-8-2 and RP2068-18-3-5 (F val 6.56, P val 0.0000). **White ear damage** by stem borer was reported from 8 locations. White ear damage was significantly lower in protected treatments at 5 locations (Fval 17.93; P val 0.0039) and interaction effects were significant at 2 locations. This variation could be due to the type of insecticide used and the timing of insecticidal application. CulM9 and Suraksha recorded significantly lower damage followed by W 1263 and KMR3 as compared to other test lines (F val 24.78 P val 0.0000).

Leaf folder damage was significant in 6 locations. Protected treatments had significantly lower damage (4.11% DL) as compared to unprotected (6.3% DL) treatments. Among the test entries, damage was significantly low in CulM9 (0.5%DL) followed by Suraksha (3.56 % DL) and W1263 (4.2% DL).

Grain Yield: Analysis of grain yield from 8 locations suggested that grain yields were significantly higher under protected conditions (F al, 5.45, Pval 0.0522). Statistical analysis revealed that among the test entries, yields were higher in KMR 3 and RP5587-273-1-B-B-B (4.2-4.3/ha) followed by CR Dhan 317(F val 4.94, P val 0.0). Interaction effects were not significant. Cul M9 and Suraksha had lower damage for gall midge, stem borer and leaf folder though the yields are very low.

ICAR-IIRR Annual Progress Report 2023, Vol. 2 – Entomology

				~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~										
	ABP	ABP	ABP	GNV	PTB	PTB	PTB	PTB	PTB	MGL	WGL	MGL	MGL	TTB
"roatmonte	34 DAT	48 DAT	67 DAT	Post count	35 DAT	45 DAT	55 DAT	75 DAT	85 DAT	45 DAT	61 DAT	69 DAT	85 DAT	
							%Silver Sho	oots						
					Aft. appln.	Bef. appIn.	Aft. appln.	Bef. appln.	Aft. appln.					
SUL M9	1.10(1.22)abc	0.04(0.73)c	0.55(0.94)de	NT	0.59(0.94)cd	5.59(2.34)d	14.88(22.53)e	19.08(25.74)c	25.56(29.42)d	2.03(1.58)d	2.61(1.76)d	1.68(1.43)e	0.69(1.06)bc	NT
CR 3006-8-2	1.29(1.31)ab	0.77(1.02)bc	1.73(1.34)ab	13.40(3.72)a	0.97(1.12)bcd	10.84(3.22)c	34.16(35.64)cd	48.38(44.11)b	43.57(41.19)c	7.35(2.75)bc	11.77(3.46)bc	7.85(2.87)c	0.72(1.07)c	9.21(2.98)
CR Dhan 317	0.93(1.11)bc	0.58(0.97)bc	2.25(1.53)ab	11.85(3.51)b	1.70(1.34)bcd	11.05(3.26)bc	45.92(42.61)ab	64.49(53.80)b	59.91(52.71)ab	13.93(3.77)a	25.21(5.06)a	12.92(3.53)b	1.08(1.22)ab	10.88(3.27)
kshayadhan PYL	0.65(1.02)cd	0.67(1.00)bc	0.64(1.01)cd	10.32(3.28)d	2.79(1.53)abc	17.31(4.10)ab	36.37(36.99)abcd	d(8.44.89)b	60.15(52.27)b	3.31(1.95)d	4.57(2.21)cd	3.99(2.11)d	0.00(0.71)c	8.10(2.82)
RP5587-273-1-B-B-B	1.02(1.15)bc	0.57(0.96)bc	0.43(0.92)de	10.96(3.38)cd	1.44(1.26)bcd	11.22(3.30)bc	33.70(34.13)d	55.10(48.13)b	48.22(44.06)bc	6.47(2.60)c	10.51(3.29)bc	7.74(2.81)c	0.82(1.06)bc	8.01(2.67)
(MR3	0.21(0.83)d	0.49(0.95)bc	1.29(1.26)bc	7.46(2.81)f	0.79(1.07)bcd	13.71(3.59)abc	43.76(41.30)abc	75.73(64.14)a	52.63(47.01)ab	9.71(3.16)b	21.34(4.64)a	17.52(4.21)a	0.92(1.15)ab	8.23(2.71)
Suraksha	0.31(0.87)d	0.00(0.71)c	0.00(0.71)e	5.33(2.38)g	0.42(0.92)d	11.80(3.46)bc	16.62(23.54)e	20.91(26.61)c	23.53(28.70)d	1.56(1.39)e	1.61(1.43)d	1.66(1.46)e	0.00(0.71)bc	9.87(2.89)
V1263	0.60(1.00)cd	0.00(0.71)c	0.00(0.71)e	5.60(2.45)g	0.35(0.87)d	5.22(2.33)d	7.31(14.89)f	6.40(12.92)d	21.00(27.02)d	1.08(1.22)e	2.19(1.61)d	1.58(1.43)e	0.38(0.87)bc	10.73(3.19)
RP2068-18-3-5	0.65(1.02)cd	0.99(1.09)ab	0.99(1.15)bc	11.29(3.43)bc	2.33(1.60)ab	12.06(3.52)abc	42.55(40.59)abc	59.19(50.40)b	64.84(55.65)a	2.37(1.67)d	4.47(2.21)cd	4.47(2.22)d	0.13(0.78)c	9.33(3.04)
N	2.23(1.46)a	1.97(1.37)a	3.12(1.72)a	8.27(2.95)e	4.49(2.11)a	18.93(4.33)a	46.80(43.11)a	76.57(64.90)a	67.26(55.74)a	18.51(4.32)a	24.67(5.01)a	20.52(4.57)a	1.99(1.51)a	10.24(3.18)
SD(0.05)	0.25	0.31	0.39	0.12	0.59	0.84	6.33	9.94	9.97	0.52	0.46	0.58	0.36	ns
SV(%)	19.62	27.55	29.44	3.42	46.45	25.24	18.87	22.82	22.99	18.21	12.98	18.6	30.06	20
Main plot treatments														
rotected	0.22(0.82)	0.05(0.73)	0.35(0.84)	8.08(2.88)	1.22(1.14)	11.91(3.38)	29.25(31.68)	45.42(41.77)	43.12(41.30)	6.62(2.49)	10.81(3.04)	7.63(2.60)	0.45(0.92)	4.49(2.15)
JnProtected	1.57(1.38)	1.17(1.17)	1.85(1.42)	10.69(3.32)	1.96(1.41)	11.63(3.31)	35.16(35.39)	49.73(45.35)	50.22(45.46)	6.64(2.39)	10.98(3.10)	8.35(2.73)	0.90(1.10)	14.31(3.80)
3D(0.05)	0.28	SU	0.41	0.13	0.26	su	2.47	su	su	0.08	su	su	su	1.26
SV(%)	23.02	90.43	32.76	3.55	29.09	28.65	10.37	41.72	68.85	2.97	6.11	13.15	67.42	36.23
nteraction														
Protection and Variety	0.36	ns	0.55	0.18	ns	ns	SU	su	ns	ns	ns	ns	ns	ns
ariety and Protection	0.4	SU	0.61	0.19	ns	ns	SU	su	ns	ns	ns	ns	ns	ns
Experimental Mean	1.1	0.95	1.13	3.1	1.28	3.34	33.53	43.56	43.38	2.44	3.07	2.66	1.01	2.97

Table 2.4.2 Reaction of resistant cultures to gall midge damage, OPCT, kharif 2023.

Note: Means in a column followed by same letter are not significantly different from one other. Values in parentheses are square root transformed values.

Entomology
Ι
\sim
Vol.
2023,
Report
Progress
Annual
AR-IIRR
Ú.

ו מחום ביאיט ואפמר		SISTAIL CULL	nico no ne	au licai l uc	משפר אש		כו מו יכאכ	נמנועה שוומ:	96, UT UT,					
	ABP	ABP	ABP	CHN	CHN	RPR	RPR	RPR	KUL	KUL	LDN	LDN	GNV	GNV
Treatment No	34 DAT	48 DAT	67 DAT	DH35DAT	DH52DAT	%DH 40DAT	%DH 60DAT	%DH 80DAT	HD%	HQ%	46%DH	54%DH	%DH30DAT	%DH
				Before appln.	After appln.				1st obs.	2nd obs.	Before appln.	After appln.	Precount	Post count
CUL M9	1.91(1.43)c	3.67(1.79)cd	3.13(1.86)de	2.43(1.69)a	6.25(2.59)	0.00(0.71)b	11.19(3.38)	21.61(27.41)	NT	LΝ	NT	LΝ	NT	NT
CR 3006-8-2	1.51(1.37)c	5.52(2.39)abc	5.80(2.39)bc	1.32(1.28)bc	5.16(2.36)	0.00(0.71)b	11.60(3.40)	20.52(25.63)	1.16(1.13)bc	3.19(1.73)c	4.08(2.13)d	3.62(1.97)c	16.16(4.06)	12.10(3.55)a
CR Dhan 317	5.61(2.40)ab	4.79(2.17)bc	5.11(2.28)bcd	1.44(1.27)c	4.94(2.32)	0.62(0.98)a	13.24(3.66)	19.34(25.83)	0.61(0.98)c	4.79(2.16)bc	5.02(2.35)c	3.93(2.05)c	13.77(3.70)	10.85(3.36)ab
GMSS 20-74	5.08(2.27)b	6.97(2.53)abc	6.27(2.58)b	1.12(1.22)c	5.62(2.47)	0.00(0.71)b	11.84(3.42)	22.01(27.78)	0.75(1.02)c	4.85(2.29)abc	7.08(2.75)b	7.31(2.77)a	15.28(3.92)	9.72(3.19)b
RP5587-273-1-B-B-B	2.38(1.63)c	3.76(1.92)bcd	4.03(1.96)cde	2.21(1.58)abc	9.03(3.04)	0.00(0.71)b	12.47(3.50)	24.81(29.77)	1.36(1.20)abc	9.13(2.73)ab	7.11(2.76)b	6.33(2.60)b	15.26(3.89)	10.66(3.34)ab
KMR3	2.27(1.60)c	7.98(2.82)ab	2.03(1.57)ef	3.49(1.96)a	7.63(2.80)	0.00(0.71)b	13.26(3.64)	22.38(28.08)	1.15(1.09)c	8.93(2.90)ab	3.79(2.07)d	3.54(1.97)c	14.95(3.86)	7.31(2.78)c
Suraksha	4.71(2.23)b	1.23(1.15)d	1.06(1.16)f	3.21(1.93)a	6.62(2.64)	0.00(0.71)b	13.64(3.72)	25.43(30.09)	2.42(1.53)ab	3.14(1.88)c	4.18(2.16)d	3.55(1.97)c	18.20(4.17)	6.87(2.66)c
W1263	1.77(1.48)c	0.84(1.04)d	0.95(1.10)f	2.46(1.66)ab	6.21(2.42)	0.00(0.71)b	11.79(3.46)	20.57(26.43)	0.46(0.89)c	1.80(1.39)d	4.16(2.16)d	3.58(1.97)c	18.89(4.29)	5.40(2.39)d
RP2068	2.26(1.61)c	3.81(2.00)bod	2.68(1.73)e	1.14(1.18)d	6.62(2.66)	0.00(0.71)b	11.67(3.47)	28.29(31.27)	2.36(1.57)a	10.60(3.07)a	4.05(2.13)d	3.18(1.89)d	14.71(3.83)	10.60(3.33)ab
TN1	7.71(2.84)a	10.56(3.29)a	9.69(3.17)a	2.65(1.76)a	8.29(2.96)	0.35(0.86)ab	12.62(3.57)	21.66(27.47)	2.75(1.58)a	8.43(2.86)ab	7.89(2.89)a	7.13(2.73)a	15.12(3.81)	7.68(2.85)c
CD(0.05)	0.52	0.93	0.52	0.38	su	0.18	su	su	0.41	62'0	0.09	80'0	su	0.23
CV(%)	23.52	37.91	22.45	21.18	19.32	20.65	11.37	20.27	28.52	28.96	3.29	3.04	22.47	6.41
Main treatments														
Protected	2.40(1.60)	3.76(1.90)	2.76(1.66)	1.49(1.33)	6.53(2.58)	0.20(0.79)	12.47(3.54)	23.60(28.79)	0.51(0.94)	3.32(1.80)	5.36(2.39)	2.90(1.81)	13.45(3.66)	8.01(2.87)
UnProtected	4.64(2.17)	6.06(2.32)	5.39(2.30)	2.80(1.77)	6.75(2.67)	0.00(0.71)	12.19(3.50)	21.72(27.17)	2.38(1.50)	8.87(2.87)	5.16(2.36)	6.47(2.62)	18.18(4.24)	10.03(3.23)
CD(0.05)	0.54	ns	ns	0.31	ns	ns	ns	ns	ns	ns	ns	0.07	0.14	0.12
CV(%)	25.83	20.36	40.65	17.94	20.55	26.31	82.26	64.14	128.08	46.05	5.72	2.54	3.09	3.41
Interaction														
Protection and Variety	ns	su	ns	ns	ns	ns	ns	ns	ns	ns	0.13	0.11	ns	0.32
Variety and Protection	ns	su	ns	ns	ns	ns	ns	ns	ns	ns	0.17	0.12	ns	0.32
Experimental Mean	1.89	2.11	1.98	1.55	2.62	0.75	3.52	27.98	1.22	2.34	2.38	2.21	3.95	3.05
CD(0.05)	0.54	su	su	0.31	ns	ns	su	su	ns	su	ns	0.07	0.14	0.12
CV(%)	25.83	20.36	40.65	17.94	20.55	26.31	82.26	64.14	128.08	46.05	5.72	2.54	3.09	3.41

Table 2.4.3 Reaction of resistant cultures to dead heart damage by stem borer at vegetative phase. OPCT, kharif2023

Note: Means in a column followed by same letter are not significantly different from one other. Values in parentheses are arc sine transformed values.

ICAR-IIRR Annual Progress Report 2023, Vol. 2 – Entomology

				age by stell by	וכו מו זכאכומו	ve prinacy C		100 000	(
	PTB	PTB	PTB	PTB	PTB	ШB	TTB	MGL	MGL	MGL	MGL
Treatment No	%DH 30DAT	%DH 45DAT	%DH 55DAT	%DH 75DAT	%DH 85DAT	HD%	%DH 50DAT	%DH 45DAT	%DH61DAT	%DH 69DAT	%DH 85DAT
	After appln	Bef. appln	Aft. appln	Bef appln	Aft. appln	1ST Obser	2ND Obser				
CUL M9	0.67(0.99)a	7.12(2.52)	3.26(1.70)	3.39(1.71)	1.71(1.35)	NT	NT	0.35(0.91)	0.65(0.98)bc	0.34(0.88)	0.57(1.01)bc
CR 3006-8-2	0.00(0.71)b	3.63(1.85)	1.59(1.37)	2.56(1.62)	0.91(1.07)	11.13(3.35)	7.87(2.85)	1.79(1.39)	0.66(1.01)bc	1.00(1.17)	0.43(0.91)bc
CR Dhan 317	0.00(0.71)b	3.18(1.83)	1.25(1.25)	1.66(1.42)	0.13(0.77)	11.48(3.33)	8.86(3.03)	0.63(1.00)	0.83(1.11)bc	3.02(1.43)	0.14(0.78)c
GMSS 20-74	0.00(0.71)b	3.74(1.81)	2.40(1.59)	5.06(2.14)	1.12(1.17)	11.23(3.39)	8.54(2.97)	0.76(1.02)	2.40(1.62)a	2.19(1.62)	0.31(0.87)bc
RP5587-273-1-B-B-B	0.36(0.88)ab	6.44(2.54)	2.60(1.55)	4.07(1.98)	0.40(0.91)	10.66(3.23)	9.01(3.03)	1.23(1.21)	1.52(1.40)ab	1.53(1.30)	0.43(0.94)bc
KMR3	0.00(0.71)b	4.09(2.03)	1.42(1.26)	1.98(1.46)	0.61(1.02)	10.59(3.19)	8.85(3.02)	1.12(1.25)	1.09(1.24)abc	1.09(1.19)	0.12(0.77)c
Suraksha	0.00(0.71)b	2.23(1.58)	1.10(1.19)	1.08(1.15)	0.37(0.88)	9.62(3.10)	8.70(3.02)	0.18(0.81)	0.11(0.77)d	0.00(0.71)	0.56(0.98)bc
W1263	0.19(0.80)ab	3.87(1.90)	1.75(1.37)	1.52(1.35)	0.26(0.84)	9.10(3.03)	9.38(3.08)	0.62(1.01)	0.28(0.85)c	0.10(0.76)	0.75(1.05)bc
RP2068	0.00(0.71)b	4.28(2.06)	2.55(1.67)	3.03(1.74)	0.76(1.08)	9.46(3.01)	8.43(2.95)	1.23(1.29)	2.42(1.65)a	1.16(1.22)	0.85(1.09)b
TN1	0.00(0.71)b	2.31(1.54)	2.11(1.54)	5.28(2.16)	0.39(0.91)	9.28(2.86)	9.15(3.06)	0.27(0.83)	0.78(1.06)bc	0.64(1.03)	4.18(2.10)a
CD(0.05)	0.19	su	su	su	su	su	su	su	0.43	ns	0.29
CV(%)	25.24	43.62	46.99	50.75	41.82	16.64	6.36	37.49	31.66	45.28	23.88
Main treatments											
Protected	0.07(0.74)	4.09(1.98)	1.56(1.32)	2.79(1.59)	0.44(0.91)	7.01(2.68)	6.01(2.55)	0.65(1.02)	1.24(1.25)	0.87(1.10)	0.42(0.91)
UnProtected	0.18(0.78)	4.08(1.95)	2.45(1.58)	3.13(1.76)	0.89(1.09)	13.55(3.65)	11.50(3.46)	0.99(1.13)	0.91(1.09)	1.34(1.17)	1.24(1.19)
CD(0.05)	ns	su	ns	ns	0.16	su	0.41	ns	ns	ns	0.24
CV(%)	41.69	62.53	37.83	40.55	22.69	74.67	11.8	48.36	43.71	34.29	20.97
Interaction											
Protection and Variety	ns	ns	ns	ns	มร	su	ns	ns	ns	ns	0.41
Variety and Protection	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	0.44
Experimental Mean	0.76	1.97	1.45	1.67	1.0	3.17	3.0	1.07	1.17	1.13	1.05
CD(0.05)	ns	มร	ns	ns	0.16	ns	0.41	ns	ns	ns	0.24
CV(%)	41.69	62.53	37.83	40.55	22.69	74.67	11.8	48.36	43.71	34.29	20.97

Table 2.4.3 Reaction of resistant cultures to dead heart damage by stem borer at vegetative phase. OPCT, kharif2023 (Contd...)

Note: Means in a column followed by same letter are not significantly different from one other. Values in parentheses are arc sine transformed values.

Table 2.4.3 Reaction o	of resistant	: cultures to w	/hite ear dama	age by stem bore	er at reprodue	ctive phase, Of	PCT, kharif 202;	з. Э.		
	CHN	CHN	GNV	IIRR	LDN	PTB	RPR	TTB	TTB	MGL
Treatments	77DAT	101DAT	100DAT	Pr harvest	102DAT	Pr harvest	100 DAT	1ST Obser	120 DAT 2nd Obs	107DAT
					White	ears (%)				
CUL M9	6.36(2.59)	9.73(3.17)d	NT	NF	NT	17.63(24.68)ab	9.25(17.67)e	NT	NT	0.60(1.02)f
CR 3006-8-2	4.41(2.19)	12.24(3.55)b	17.96(4.29)a	40.55(39.52)a	6.25(2.60)e	22.61(27.99)a	37.13(37.42)a	16.43(4.04)	12.56(3.48)	11.56(3.28)b
CR Dhan 317	4.85(2.26)	7.73(2.84)d	18.05(4.29)a	24.61(29.62)e	7.17(2.76)d	16.90(24.02)ab	14.40(22.15)d	11.99(3.40)	13.09(3.54)	1.04(1.21)e
Akshayadhan PYL	5.44(2.41)	14.90(3.92)a	15.77(4.02)b	29.17(32.67)cd	10.73(3.34)a	19.92(25.94)ab	21.63(27.61)c	17.95(4.24)	14.36(3.82)	5.04(2.14)cd
RP5587-273-1-B-B-B	6.16(2.43)	11.52(3.44)bc	13.14(3.67)c	29.16(32.58)d	11.27(3.42)a	20.02(25.24)ab	15.61(23.23)d	14.26(3.73)	10.41(3.22)	3.37(1.82)de
KMR3	4.84(2.27)	11.57(3.47)bc	13.40(3.68)c	30.10(32.93)cd	6.38(2.62)e	11.74(19.84)b	13.96(21.73)d	12.41(3.44)	12.39(3.55)	3.00(1.69)d
Suraksha	7.14(2.73)	9.01(3.07)d	1.89(1.53)e	29.26(32.72)cd	9.41(3.10)b	13.09(19.69)b	29.39(32.58)b	12.72(3.53)	14.72(3.83)	9.11(3.04)b
W1263	6.36(2.58)	10.48(3.29)cd	0.82(1.14)f	34.94(36.17)abc	8.50(2.98)c	15.59(22.94)ab	29.20(32.51)b	13.61(3.67)	11.81(3.43)	7.52(2.75)bc
RP2068	6.62(2.65)	9.13(3.09)d	14.41(3.84)bc	34.18(35.72)bcd	NT	7.78(11.55)c	25.65(30.29)bc	11.70(3.21)	11.31(3.34)	4.72(2.16)cd
TN1	4.84(2.28)	12.42(3.58)b	10.10(3.23)d	37.75(37.87)ab	10.87(3.36)a	8.28(11.98)c	22.00(27.75)c	12.63(3.48)	10.57(3.25)	16.33(4.09)a
CD(0.05)	su	0.25	0.26	3.52	0.11	6.68	3.88	ns	ns	0.77
CV(%)	19.11	6.42	6.78	8.75	3.15	31.21	12.2	18.01	13.98	28.49
Main treatments										
Protected	4.88(2.29)	9.33(3.10)	9.68(3.03)	32.17(34.43)	7.41(2.80)	17.02(23.49)	22.53(27.86)	8.13(2.85)	8.03(2.87)	6.28(2.34)
UnProtected	6.52(2.59)	12.41(3.58)	13.77(3.57)	32.21(34.41)	10.23(3.25)	13.69(19.28)	21.11(26.73)	19.36(4.42)	16.68(4.12)	6.18(2.31)
CD(0.05)	ns	0.18	0.54	ns	0.1	4	ns	0.2	0.85	ns
CV(%)	29.15	4.76	13.87	3.21	2.76	26.32	39.7	4.59	20.85	79.96
Interaction										
Protection and Variety	ns	ns	ns	ns	0.16	9.44	ns	ns	ns	ns
Variety and Protection	ns	ns	ns	us	0.17	9.53	ns	ns	ns	ns
Experimental Mean	2.44	3.34	3.3	34.42	3.02	21.39	27.29	3.64	3.5	2.32

CCUC 3:" 4 ------ 11 --1 . . • 4 NF- no flowering; NT- not tested; Means in a column followed by same letter are not significantly different from one other. Values in parentheses are arc sine transformed values.
ICAR-IIRR Annual Progress Report 2023, Vol. 2 – Entomology

						2													
	CHN	CHN	GNV	GNV	KUL	KUL	KUL	LDN	LDN	PTB	PTB	PTB	PTB	PTB	RPR	RPR	RPR	TTB	ΠB
^r reatment	52DAT	77DAT	Precount	45DAT	25DAT	35DAT	51DAT	46DAT	54DAT	30DAT	45DAT	55DAT	75DAT	85DAT	40DAT	60DAT	80DAT		65DAT
									% Dai	naged leav	es								
SUL M9	2.32(1.67)bc	1.39(1.37)	NT	NT	NT	NT	NT	NT	NT	0.18(0.80)	1.71(1.46)	1.11(1.21)b	1.08(1.20)d	4.53(2.13)e	2.92(1.82)	2.81(1.76)	10.39(3.20)	NT	NT
JR 3006-8-2	2.25(1.65)c	1.47(1.39)	6.07(2.42)	8.77(3.04)a	11.05(3.26)	11.23(3.30)ab	2.31(1.55)	5.93(2.53)c	5.01(2.32)de	0.11(0.78)	2.44(1.66)	2.28(1.63)a	9.67(3.15)a	13.22(3.61)ab	2.35(1.63)	2.60(1.74)	7.27(2.75)	7.99(2.79)	0.42(3.22)
CR Dhan 317	3.12(1.88)ab	1.05(1.24)	6.74(2.67)	7.68(2.86)b	8.31(2.95)	9.23(3.09)b	4.01(1.98)	6.12(2.57)c	5.63(2.44)cd	0.11(0.77)	1.81(1.43)	2.52(1.70)a	8.71(3.02)ab	11.57(3.40)abc	3.18(1.87)	2.94(1.81)	7.99(2.86)	8.37(2.88)	9.19(3.06)
Vkshayadhan PYL	2.37(1.69)bc	1.13(1.28)	8.60(3.02)	5.78(2.50)d	12.48(3.56)	13.04(3.51)ab	7.66(2.37)	7.01(2.74)ab	7.88(2.85)ab	0.11(0.78)	2.21(1.56)	2.75(1.75)a	8.07(2.89)ab	11.68(3.37)abc	3.10(1.83)	2.74(1.78)	7.40(2.75)	8.22(2.91)	9.68(3.15)
RP 5587-273-1-B-B-B	3.30(1.92)a	1.29(1.33)	6.02(2.39)	4.91(2.32)e	11.34(3.40)	11.23(3.36)	4.55(1.97)	6.74(2.69)b	7.53(2.80)b	0.10(0.77)	1.97(1.55)	2.48(1.69)a	6.92(2.65)b	10.31(3.15)bcd	3.62(1.95)	2.03(1.56)	8.11(2.92)	7.81(2.78)	0.18(3.22)
(MR3	2.65(1.77)abc	1.33(1.35)	7.50(2.79)	3.70(2.05)f	8.52(2.96)	9.91(3.16)b	4.51(2.02)	6.85(2.71)b	5.84(2.50)c	0.06(0.75)	1.18(1.28)	2.36(1.65)a	6.65(2.64)b	8.99(3.02)cd	2.74(1.73)	2.12(1.61)	10.04(3.22)	7.04(2.67)	8.78(3.01)
Suraksha	1.96(1.57)c	1.30(1.34)	9.06(3.02)	1.89(1.54)h	8.81(2.98)	5.20(2.36)ab	1.49(1.34)	5.38(2.42)d	4.69(2.26)e	0.03(0.72)	2.05(1.52)	0.74(1.06)c	2.22(1.59)c	7.75(2.74)d	2.53(1.71)	2.29(1.65)	7.55(2.75)	6.38(2.52)	8.54(2.98)
V1263	2.16(1.62)c	1.42(1.38)	5.80(2.48)	1.37(1.36)i	10.32(3.24)	9.82(3.11)b	2.17(1.56)	3.94(2.10)f	3.85(2.07)f	0.01(0.72) (0.75(1.07)	1.79(1.45)ab	2.87(1.72)c	8.26(2.75)d	2.07(1.55)	2.31(1.65)	7.86(2.85)	6.28(2.55)	9.76(3.15)
TP 2068	2.72(1.79)ab c	1.49(1.41)	7.64(2.83)	6.75(2.69)c	11.54(3.38)	15.15(3.87)a	3.61(1.90)	4.79(2.30)e	4.24(2.16)e	0.06(0.75)	1.44(1.36)	2.08(1.57)ab	6.27(2.56)b	12.25(3.52)abc	3.04(1.83)	2.68(1.74)	7.89(2.84)	7.28(2.73)	9.39(3.12)
N	2.39(1.69)bc	1.48(1.40)	8.70(2.99)	2.98(1.86)g	11.55(3.44)	13.23(3.69)ab	2.42(1.65)	7.61(2.84)a	8.70(2.98)a	0.10(0.77)	1.87(1.53)	2.53(1.72)a	6.59(2.57)b	14.26(3.75)a	2.46(1.62)	3.24(1.86)	7.86(2.85)	6.31(2.52)	9.67(3.15)
CD(0.05)	0.22	su	su	0.07	su	0.6	su	0.10	0.16	su	su	0.36	0.46	0.51	su	su	su	su	su
(%) X(10.75	9.51	21.48	2.55	13.97	15.7	31.44	3.43	5.49	13.38	26.04	23.2	19	16.1	19.04	18.29	13.18	11.23	5.68
Aain treatments																			
² rotected	2.57(1.74)	1.28(1.33)	7.62(2.79)	4.52(2.17)	11.79(3.47)	8.62(2.98)	0.99(1.19)	6.30(2.59)	4.03(2.12)	0.14(0.79)	1.78(1.44)	1.76(1.43)	4.80(2.15)	7.89(2.74)	3.12(1.83)	2.69(1.74)	8.74(3.00)	4.08(2.11)	6.44(2.63)
JnProtected	2.48(1.72)	1.39(1.37)	7.07(2.68)	5.22(2.33)	9.08(3.02)	13.17(3.56)	6.28(2.44)	5.78(2.50)	7.83(2.85)	0.03(0.73)	1.71(1.44)	2.36(1.66)	7.02(2.65)	12.67(3.55)	2.48(1.67)	2.46(1.69)	7.73(2.79)	10.52(3.29)	2.58(3.61)
CD(0.05)	su	su	su	0.02	su	su	su	su	0.22	su	su	0.12	0.21	su	su	su	su	ns	0.13
SV(%)	20.75	15.43	31.05	0.84	15.24	45.11	68.51	4.85	7.39	12.2	38.54	11.24	12.38	71.89	107.18	69.16	82.1	40.18	3.56
nteraction																			
Protection and Variety	su	su	su	ns	su	su	su	su	0.23	ns	ns	ns	ns	ns	ns	su	ns	ns	ns
/ariety and Protection	us	su	us	ns	su	us	ns	us	0.27	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
Experimental Mean	1.73	1.35	2.73	2.25	3.24	3.27	1.81	2.55	2.49	0.76	1.44	1.54	2.4	3.14	1.75	1.72	2.9	2.7	3.12

Table 2.4.5 Reaction of resistant cultures to leaffolder damage, OPCT, kharif 2023

Note: Means in a column followed by same letter are not significantly different from one other. Values in parentheses are square root transformed values.

Trestments				Grain yield	(kg/ha)			
Treatments	ABP	CHN	GNV	IIRR	LDN	PTB	RPR	WGL
CUL M9	700.76e	5600c	NT	NF	NT	NF	4166.67d	2006.17d
CR 3006-8-2	2838.64bc	6030a	1783.33e	6611.11a	3466.98a	2059.17a	4777.78c	4356.6c
CR Dhan 317	3871.97a	5967.78ab	2268d	6685.19a	3089.62c	1708.33abc	6347.22a	6422.13a
Akshayadhan PYL	2784.85bcd	3925.56e	2788.67cd	4661.11b	2830.19d	1704.17abc	3458.33e	5282.53b
RP5587-273-1-B-B-B	2784.85bcd	4506.67d	2418cd	6875.93a	3264.94b	1642.50bc	4736.11c	5092.59b
KMR3	2311.36cd	5902.22ab	2943.33c	5936.87ab	3202.04b	1549.17bc	5180.56b	5033.24b
Suraksha	645.45e	2662.22g	5053.33a	3432.41c	2637.58e	698.75d	2305.56f	735.99e
W1263	1310.61e	2870f	4093.33b	6345.37a	2633.65e	1848.75ab	2006.94f	1517.09d
RP2068	3210.61ab	3941.11e	2784cd	6594.44a	NF	1731.67abc	4125d	3774.93c
TN1	2138.64d	5823.33b	2432.67cd	5550ab	1352.2f	1410.42c	3368.06e	3948.24c
CD(0.05)	679	170	590	1387	83	392	381	646
CV(%)	26	3	17	16	3	25	8	15
Main plot treatments								
Protected	2516	4867	4208	6168	3216	1809	4758	4275
UnProtected	2003	4579	1696	5541	2172	1380	3336	3359
CD(0.05)	ns	ns	1453	461	147	84	111	316
CV(%)	21	6	42	2	5	7	2	7
Interaction								
Protection and Variety	ns	ns	835	1961	117	ns	ns	ns
Variety and Protection	ns	ns	1371	1866	159	ns	ns	ns
Experimental Mean	2260	4723	2952	5855	2694	1557	4047	3817

Table 2.4.6 Grain yield of resistant cultures tested in OPCT kharif 2023

Note: Means in a column followed by same letter are not significantly different from one other. NF- No flowering; NT- Not tested

2.5.1 Influence of Establishment Methods on Pest Incidence (IEMP)

The increasing pressure on irrigated agriculture to use less water due to the global water shortage, particularly in Asia and India is forcing farmers and scientists to search for alternatives. India's traditional rice-growing practices pose a significant threat to water conservation. The System of Rice Intensification (SRI), aerobic rice, mechanical transplanting, direct seeding, and other alternative rice establishment techniques are already being used by rice farmers. With this in mind, a collaborative study with the Agronomy division was designed to evaluate the impact of crop establishment techniques on the incidence of insect pests.

During *Kharif* 2023, the trial was conducted at 12 locations, *viz*. Aduthurai, Chinsurah, Ghaghraghat, Jagdalpur, Malan, Moncompu, Nawagam, Pantnagar, Pusa, Pattambi, Rajendranagar and Titabar.

1. Aduthurai

Mechanical transplanting, direct seeding and normal transplanting methods were evaluated with ADT 56 variety at this location (**Table2.5.1.1**). Incidence of dead hearts and white ears caused by stem borer, silver shoots caused by gall midge; leaf folder, whorl maggot and hispa damaged leaves and brown planthopper numbers was observed in all three establishment methods. However, the incidence was low and at par in all the establishment methods.

	<u>%</u> С	DH	% WE	% SS	% LFDL	% WMDL	% HDL	BPH / 5 hills
Treatments	45 DAT	60 DAT	Pre- harvest	45 DAT	75 DAT	45 DAT	30 DAT	60 DAT
T1 = Mechanical transplanting	6.7(2.5)a	7.6(2.8)a	10.2(3.3)a	0.3(0.8)a	0.2(0.8)b	1.4(1.3)a	0.1(0.8)a	0.4(0.9)a
T2 = Direct seeding	3.9(1.7)a	3.7(1.7)a	6.5(2.6)a	0.0(0.7)a	1.8(1.4)ab	2.5(1.6)a	10.4(2.6)a	6.2(2.0)a
T3 = Normal transplanting	11.0(3.2)a	5.0(1.9)a	10.5(2.8)a	0.2(0.8)a	3.6(1.9)a	2.1(1.3)a	3.0(1.8)a	2.0(1.2)a
LSD (0.05)	1.68	2.07	1.91	0.33	0.93	0.39	2.35	2.34
CV (%)	17.86	24.14	37.04	24.04	38.18	15.25	15.96	15.75

 Table 2.5.1.1 Influence of Crop Establishment Methods on Pest Incidence at Aduthurai, Kharif 2023

Values in parenthesis are square-root transformed values, Means followed by the same letter in a column are not significantly different from each other

2. Chinsurah

At this location, three establishment methods, mechanised transplanting, puddled direct seeding and unpuddled dry direct seeding were evaluated as main plots and weedy check, mechanical weeding and chemical weed control as subplots with Manisha variety (**Table 2.5.1.2**). There was a high incidence of dead hearts at 45 DAT (13.4 - 34.4% DH) but they were at par in different establishment methods. A similar trend was observed with dead hearts at 30 DAT and 60 DAT. White ear damage varied from 17.1 to 20.3% with no significant differences among the establishment methods. A similar trend was noticed for whorl maggot damage (15.0)

- 22.2% WMDL). Among the subplots, dead heart damage was high in mechanical weeding (32.6% DH) and was at par with chemical weed control (18.2% DH) and weedy check (13.3% DH) at 45 DAT. The same trend was noticed for white ear damage and whorl maggot damage among subplot treatments.

	Main plata		% DH		% WE	% LFDL	% WMDL
	main plots	30 DAT	45 DAT	60 DAT	Pre har	60 DAT	30 DAT
M1 = Mechani	sed transplanting	14.4(3.3)a	16.3(4.0)a	8.5(3.0)a	18.0(4.2)a	5.8(2.5)a	15.0(3.9)a
M2 = Puddled	direct seeding	18.5(3.4)a	13.4(3.7)a	17.3(4.2)a	17.1(4.2)a	5.5(2.4)a	22.2(4.3)a
M3 = Unpuddl	ed dry direct seeding	12.5(2.9)a	34.4(5.1)a	18.4(4.3)a	20.3(4.5)a	5.1(2.3)a	18.3(3.8)a
	LSD (0.05)	4.06	2.53	0.80	0.65	0.38	5.96
	CV(%)	25.89	25.26	12.44	8.89	9.38	18.66
Sub-plots							
S1 = Weedy c	heck	11.0(2.8)a	13.3(3.7)a	14.9(3.8)a	18.0(4.3)a	6.1(2.5)a	21.2(4.1)a
S2 = Mechanie	cal weeding	11.8(3.0)a	32.6(4.9)a	15.9(4.0)a	18.8(4.4)a	5.2(2.4)a	17.7(4.0)a
S3 = Chemica	l weed control	22.6(3.8)a	18.2(4.3)a	13.3(3.6)a	18.7(4.3)a	5.2(2.4)a	16.5(3.9)a
	LSD (0.05)	3.36	2.61	0.54	0.81	0.39	1.71
	CV(%)	23.76	28.55	11.17	14.81	12.78	23.83
M1 =	Weedy check	11.1(3.0)a	12.2(3.5)a	9.2(3.1)b	17.3(4.2)a	5.0(2.3)a	13.7(3.7)a
Mechanised	Mechanical weeding	13.3(3.1)a	21.5(4.7)a	9.0(3.1)b	16.3(4.1)a	6.5(2.6)a	14.9(3.9)a
transplanting	Chemical weed control	18.8(3.8)a	15.2(3.9)a	7.2(2.7)b	20.3(4.4)a	6.0(2.5)a	16.3(4.1)a
M2 =	Weedy check	6.1(1.9)a	13.7(3.8)a	17.7(4.2)ab	16.7(4.1)a	7.1(2.7)a	25.7(4.4)a
Puddled	Mechanical weeding	11.6(3.0)a	9.6(3.2)a	17.1(4.2)ab	18.3(4.3)a	4.7(2.3)a	24.5(4.9)a
seeding	Chemical weed control	37.8(5.1)a	17.0(4.2)a	17.0(4.2)ab	16.5(4.1)a	4.8(2.3)a	16.4(3.5)a
M3 =	Weedy check	15.9(3.4)a	14.0(3.7)a	17.7(4.2)ab	19.8(4.5)a	6.1(2.6)a	24.3(4.2)a
Unpuddled	Mechanical weeding	10.4(2.9)a	66.7(6.8)a	21.6(4.7)a	21.8(4.7)a	4.4(2.2)a	13.8(3.2)a
ary direct seeding	Chemical weed control	11.1(2.4)a	22.5(4.8)a	15.7(4.0)ab	19.2(4.4)a	4.9(2.3)a	16.9(4.1)a
LS	D (0.05) M in S	8.10	6.30	1.30	1.95	0.94	4.11
LS	D (0.05) S in M	8.86	6.31	1.58	1.84	0.95	9.48

Table 2.5.1.2 Influence of Crop Establishment Methods on Pest Incidence at Chinsurah, Kharif 2023

Values in parenthesis are square-root transformed values, Means followed by the same letter in a column are not significantly different from each other

3. Ghaghraghat

Three establishment methods, *viz.*, Direct seeding, Normal transplanting and Aerobic rice were evaluated with the NDR 2065 variety at this location. The incidence of dead hearts caused by stem borer was significantly high in Direct seeding (18.6%DH) and was at par with Aerobic rice (15.0%DH) as compared to normal transplanting (7.9%DH) at 60 DAT (**Table 2.5.1.3**) Similarly, white ear incidence was above ETL in direct seeding (10.8%WE) alone compared to the other two methods. Leaf folder damage was significantly high in aerobic rice (14.5%LFDL) and was at par with direct seeding (11.2%LFDL) as compared to normal transplanting (3.6%LFDL) at 60 DAT.

Treetmente		% DH		% WE	% L	FDL
Treatments	45 DAT	60 DAT	75 DAT	Pre har	60 DAT	75 DAT
T1 = Direct seeding	6.9(2.1)a	18.6(4.3)a	13.5(3.4)a	10.8(3.3)a	11.2(3.4)a	7.4(2.8)a
T2 = Normal transplanting	7.3(2.6)a	7.9(2.8)b	6.4(2.6)a	5.6(2.5)b	3.6(2.0)b	4.2(2.2)b
T3 = Aerobic rice	8.2(2.5)a	15.0(3.9)a	16.4(4.0)a	9.3(3.1)a	14.5(3.8)a	8.5(3.0)a
LSD (0.05)	2.17	0.92	1.93	0.62	0.62	0.50
CV(%)	20.27	13.88	31.85	11.73	12.13	10.56

 Table 2.5.1.3 Influence of Crop Establishment Methods on Pest Incidence at Ghaghraghat, Kharif

 2023

Values in parenthesis are square-root transformed values, Means followed by the same letter in a column are not significantly different from each other

4. Jagdalpur

Durgheswary variety was grown in three establishment methods such as normal transplanting, puddled direct seeding and unpuddled direct seeding as main plots and weed management practices like weedy check, mechanical weeding and chemical weed control as subplots (**Table 2.5.1.4**). Low incidence of dead hearts (<6% DH), white ears (<7% WE), silver shoots (<3%SS), leaf folder (<3% LFDL), whorl maggot (<4% WMDL) and thrips (11.2 – 11.7% THDL) was noticed in both main plot and subplot treatments and were at par with each other.

Main plot	łe	%	DH	% WE	%	SS	% L	.FDL	% THDL	% WMDL
Main pior	15	45 DAT	75 DAT	Pre har	60 DAT	75 DAT	75 DAT	90 DAT	45 DAT	45 DAT
M1 = Normal		27(16)	$(15(22))_{2}$	35(10)	1 8/1 2)2	17(13)2	$2.6(1.7)_{2}$	2 1/1 6)2	11.2(3.4)a	3 5(2 0)a
transplanting		2.7(1.0)a	4.3(2.2)α	0.0(1.0 <i>)</i> a	1.0(1.2)a	1.7(1.5)a	2.0(1.7 <i>)</i> a	2.1(1.0)a	11.2(3.4)a	0.5(2.0)a
M2 = Puddled	direct	0 8(1 0)a	5 1(2 3)a	4 5(2 1)a	1 1(1 1)a	0.6(1.0)a	2 0(1 5)a	1 1(1 2)a	11 7(3 5)a	1 4(1 3)b
seeding		0.0(1.0)4	0.1(2.0)4	1.0(2.1)4	1.1(1.1)a	0.0(1.0)4	2.0(1.0)4	1.1(1.2)a	1117 (0.0)4	1.1(1.0)5
M3 = Unpuddl	ed	1.6(1.3)a	4.9(2.2)a	6.5(2.4)a	1.2(1.1)a	0.6(0.9)a	2.4(1.7)a	2.3(1.6)a	11.6(3.5)a	2.1(1.6)ab
direct seeding	-	0.00	4.00	4.00	4.77	0.50	0.40	0.54	0.54	())
LSD (0.0	5)	0.99	1.06	1.96	1.77	0.59	0.49	0.54	0.54	0.62
CV(%)		24.91	28.28	24.31	21.05	33.48	17.73	22.16	9.33	22.54
Sub-plots										
S1 = Weedy c	heck	1.8(1.4)a	3.8(2.0)a	4.0(2.0)a	0.3(0.8)a	0.0(0.7)b	2.2(1.6)a	2.5(1.7)a	11.6(3.5)a	2.4(1.7)a
S2 = Mechanic	cal	18(13)a	4.5(2.1)a	6 3(2 5)a	2 7(1 5)a	1 0(1 0)ab	2 3(1 6)a	1 7(1 4)ab	11.3(3.4)a	2 0(1 5)a
weeding		1.0(1.0)4	1.0(2.1)4	0.0(2.0)4	2.1 (1.0)a	1.0(1.0)00	2.0(1.0)4	1.1 (1.1)40	11.0(0.1)4	2.0(1.0)4
S3 = Chemica	I	15(12)a	6 2(2 5)a	4 2(2 0)a	1 1(1 1)a	2 0(1 4)a	2 5(1 7)a	1 2(1 3)b	11 7(3 5)a	2 6(1 7)a
weed control		1.0(1.2)4	0.2(2.0)4			2.0(11)0	2.0(11)/4		(0.0)a	2.0(117)
LSD (0.0	5)	0.98	0.74	1.02	0.95	0.62	0.51	0.39	0.29	0.42
CV(%)		28.83	26.17	37.72	25.47	27.04	24.45	21.39	6.59	20.57
M1 = Normal	S1	1.8(1.4)a	4.2(2.2)a	2.8(1.6)a	0.0(0.7)a	0.0(0.7)b	1.8(1.5)a	2.9(1.8)a	12.2(3.6)a	3.7(2.0)a
transplanting	S2	3.1(1.7)a	3.4(1.9)a	4.2(2.2)a	4.6(2.0)a	0.0(0.7)b	2.9(1.8)a	1.5(1.4)a	10.8(3.3)a	3.6(2.0)a
transplanting	S3	3.3(1.8)a	5.9(2.5)a	3.5(1.8)a	0.9(1.1)a	5.1(2.4)a	3.1(1.8)a	1.9(1.5)a	10.6(3.3)a	3.3(1.9)a
M2 =	S1	2.3(1.6)a	4.3(2.2)a	3.6(2.0)a	0.0(0.7)a	0.0(0.7)b	1.2(1.3)a	1.2(1.3)a	11.8(3.5)a	1.4(1.4)a
Puddled	S2	0.0(0.7)a	5.6(2.4)a	4.6(2.1)a	2.4(1.4)a	1.0(1.1)ab	1.6(1.4)a	0.8(1.1)a	10.1(3.2)a	0.8(1.1)a
direct	63	0.0(0.7)a	5/(2/)2	53(21)2	1 1/1 1)a	0.9(1.1)ab	3 1/1 0)2	1 2(1 3)a	13 2(3 7)2	18(15)a
seeding	00	0.0(0.7)a	0.+(2.+ <i>)</i> u	0.0(2.7 <i>)</i> a	1.1(1.1)α	0.5(1.1)00	0.1(1.0 <i>)</i> a	1.2(1.0)a	10.2(0.7)0	1.0(1.0)a
M3 =	S1	1.2(1.1)a	3.0(1.7)a	5.7(2.2)a	1.1(1.1)a	0.0(0.7)b	3.5(2.0)a	3.3(1.9)a	10.8(3.3)a	2.2(1.6)a
Unpuddled	S2	2.3(1.6)a	4.5(2.0)a	9.9(3.2)a	1.3(1.2)a	2.0(1.3)ab	2.5(1.7)a	2.8(1.8)a	13.0(3.7)a	1.5(1.3)a
direct	S3	1.3(1.2)a	7.3(2.8)a	3.8(1.8)a	2.0(1.1)a	0.0(0.7)b	1.3(1.3)a	0.6(1.0)a	11.2(3.4)a	2.5(1.7)a
nunaaa I				/u						,.
		0.05	4 70	0.47	0.00	4 50	4.04	0.05	0.00	4.00
LSD (0.05) M	in S	2.35	1.78	2.47	2.30	1.50	1.21	0.95	0.69	1.02

Table 2.5.1.4 Influence of Crop Establishment Methods on Pest Incidence at Jagdalpur, Kharif 2023

Values in parenthesis are square-root transformed values, Means followed by the same letter in a column are not significantly different from each other

5. Malan

Direct seeding, normal transplanting and semi-dry rice methods were assessed with HPR 1068 variety at this location (**Table 2.5.1.5**). At 90 DAT, the dead heart damage was significantly high in normal transplanting (21.5% DH) and was at par with semi-dry rice (18.6%DH) followed by direct seeding (15.5%DH). Though the dead heart damage varied from 10.1 to 18.1% DH at 75 DAT, it was at par in all the establishment methods. Leaf folder damage at 60 DAT was significantly greater in the normal transplanting method (21.8% LFDL) compared to semi-dry rice (14.2% LFDL) which was at par with direct seeding (12.9% LFDL). Though the leaf folder damage was high at 45 DAT (14.9 – 19.7% LFDL), 75 DAT (13.9 – 23.0% LFDL) and 90 DAT (13.6 – 22.3% LFDL), it was at par in all the three establishment methods.

Table 2.5.1.5 Influence of Crop Establishment Methods on Pest Incidence at Malan, <i>Kharif</i> 20
--

Treatmente		% DH			% L	_FDL	
Treatments	60 DAT	75 DAT	90 DAT	45 DAT	60 DAT	75 DAT	90 DAT
T1 = Direct seeding	6.3(2.2)a	10.1(3.2)a	15.5(4.0)b	17.9(4.3)a	12.9(3.6)b	19.0(4.4)a	18.9(4.3)a
T2 = Normal transplanting	11.9(3.3)a	18.1(4.3)a	21.5(4.5)a	19.7(4.5)a	21.8(4.7)a	23.0(4.8)a	22.3(4.7)a
T3 = Semi-dry rice	9.5(2.9)a	11.7(3.4)a	18.6(4.4)ab	14.9(3.9)a	14.2(3.8)b	13.9(3.8)a	13.6(3.7)a
LSD (0.05)	1.5	1.19	0.51	0.62	0.71	1.18	1.27
CV(%)	29.84	18.21	6.59	8.28	9.81	15.26	16.52

Values in parenthesis are square-root transformed values, Means followed by the same letter in a column are not significantly different from each other

6. Moncompu

At this location, two crop establishment methods, drum seeding and normal transplanting were evaluated as main plot treatments with cono weeding and chemical weed control as sub-plot treatments in the Uma variety. Low incidence of dead hearts caused by stem borer (<3% DH), hispa (<1% HDL), leaf folder (<3% LFDL), and BPH (<5/hill) was observed in all the main plot and sub-plot treatments (**Table 2.5.1.6**).

 Table 2.5.1.6 Influence of Crop Establishment Methods on Pest Incidence at Moncompu, Kharif

 2023

Main plots		% [DH	%WE	%HDL	%LFDL	BPH (No./5 hills)
Main plots		45 DAT	60 DAT	Preharvest	30 DAT	30 DAT	60 DAT
Drum seeding		1.1(1.1)a	1.2(1.2)a	1.2(1.2)a	0.08(0.7)a	1.8(1.5)a	5.3(2.2)a
Normal Transpla	anting	2.1(1.5)a	1.2(1.2)a	0.9(1.1)a	0.2(0.8)a	2.1(1.6)a	3.4(1.8)a
LSD	(0.05)	1.14	1.00	0.93	0.24	0.58	0.77
CV	(%)	30.31	27.09	26.77	24.9	30.54	30.55
Subplots							
Cono weeding		1.3(1.2)a	1.1(1.9)a	0.8(1.0)a	0.3(0.8)a	2.0(1.5)a	5.7(2.3)a
Chemical weed	control	1.9(1.4)a	1.3(1.2)a	1.3(1.2)a	0.0(0.7)a	1.9(1.5)a	3.0(1.7)a
LSD	(0.05)	0.45	0.46	0.49	0.17	0.51	0.57
CV	(%)	33.55	27.08	22.57	21.24	32.26	27.35
	Cono weeding	0.8(1.0)a	1.1(1.2)a	1.3(1.9)a	0.2(0.8)a	1.7(1.5)a	9.0(3.0)a
Drum seeding	Chemical weed control	1.4(1.2)a	1.4(1.3)a	1.1(1.1)a	0.0(0.7)a	1.9(1.5)a	1.6(1.4)a
Normal	Cono weeding	1.7(1.4)a	1.2(1.2)a	0.4(0.9)a	0.4(0.9)a	2.4(1.6)a	2.4(1.6)a
Transplanting	Chemical weed control	2.4(1.6)a	1.2(1.2)a	1.5(1.2)a	0.0(0.7)a	1.9(1.5)a	4.4(2.0)a
LSD (0.0	5) M in S	0.89	0.9	0.96	0.33	0.99	1.12
LSD (0.0	5) S in M	1.78	1.59	1.51	0.41	1.09	1.37

Values in parenthesis are square-root transformed values, Means followed by the same letter in a column are not significantly different from eacj other

7. Nawagam

Three establishment methods, mechanical transplanting, direct seeding and aerobic rice were evaluated with GAR 13 variety (**Table 2.5.1.7**). Dead heart damage was significantly high in aerobic rice (22.8%DH) and was at par with direct seeding (20.3%DH) as compared to the normal transplanting method (11.9% DH) at 75 DAT. A similar trend was observed at 60 DAT. However, white ear damage at the reproductive stage ranged between 12.8 and 19.4% WE and was at par with each other. Leaf folder damage at 75 DAT was significantly higher in aerobic rice (16.5% LFDL) and was on par with direct seeding (13.1% LFDL) as against mechanical transplanting (7.7% LFDL). A low incidence of WBPH was noticed in all three crop establishment methods.

Table 2.5.1.7 Influence of Crop Establishment Methods on Pest Incidence at Nawagam, Kharif2023

Treatmente		% DH		% WE	% L	FDL	WBPH	/ 5 hills
Treatments	45 DAT	60 DAT	75 DAT	Pre har	45 DAT	75 DAT	60 DAT	75 DAT
T1 = Mechanical transplanting	7.5(2.8)a	8.2(2.9)b	11.9(3.5)b	12.8(3.6)a	2.8(1.8)b	7.7(2.9)b	3.8(2.1)a	6.2(2.6)a
T2 = Direct seeding	11.9(3.5)a	15.0(3.9)a	20.3(4.4)ab	15.3(3.9)a	9.8(3.2)a	13.1(3.7)a	1.4(1.4)b	3.0(1.9)c
T3 = Aerobic rice	12.1(3.5)a	14.8(3.8)ab	22.8(4.8)a	19.4(4.4)a	9.5(3.1)a	16.5(4.1)a	1.5(1.4)b	4.2(2.2)b
LSD (0.05)	0.83	1.06	1.24	1.13	0.85	0.78	0.18	0.29
CV(%)	14.18	16.54	16.33	15.84	17.48	12.26	6.3	7.45

Values in parenthesis are square-root transformed values, Means followed by the same letter in a column are not significantly different from each other

8. Pantnagar

PD 24 variety was grown in four establishment methods, *viz.*, wet direct seeded rice (Wet DSR), direct seeding, normal transplanting and aerobic rice. The incidence of white ears was significantly higher in aerobic rice (14.1% WE) as compared to direct seeded rice (3.0% WE) but was at par with normal transplanting (8.9% WE) and Wet DSR (8.6% WE). The incidence of dead hearts, leaf folder, whorl maggot, hispa and BPH was low in all four establishment methods (**Table 2.5.1.8**).

 Table 2.5.1.8 Influence of Crop Establishment Methods on Pest Incidence at Pantnagar,

 Kharif 2023

Establishment methods	%	DH	% WE	% LFDL	% WMDL	%HDL	BPH
Establishment methods	45 DAT	60 DAT	Pre har	45 DAT	45 DAT	45 DAT	75 DAT
Wet DSR	13.0(3.6)a	1.3(1.1)a	8.6(2.9)ab	0.5(1.0)a	3.0(1.8)a	2.8(1.7)a	1.6(1.3)a
Direct seeding	10.0(3.2)a	2.9(1.7)a	3.0(1.5)b	2.4(1.6)a	3.8(2.1)a	4.1(2.1)a	1.4(1.2)a
Normal transplanting	7.6(2.8)a	5.8(2.5)a	8.9(3.0)ab	1.6(1.4)a	2.4(1.7)a	2.1(1.6)a	4.8(2.2)a
Aerobic rice	10.8(3.2)a	4.7(2.1)a	14.1(3.7)a	1.1(1.2)a	4.3(2.2)a	2.6(1.7)a	2.6(1.6)a
LSD (0.05)	1.39	1.43	1.99	0.90	0.89	0.90	1.31
CV(%)	23.28	21.72	38.29	36.94	24.82	26.91	24.82

Values in parenthesis are square-root transformed values, Means followed by the same letter in a column are not significantly different from each other

9. Pattambi

At this location, four establishment methods, *viz.*, line sowing with drum seeder, direct seeding, normal transplanting and semi-dry rice were evaluated with Aishwarya variety (**Table 2.5.1.9**). The incidence of silver shoots caused by gall midge was significantly high in direct seeding (30% SS) at 30 DAT and was at par with the other three establishment methods (11.3 - 22.0% SS). Whorl maggot incidence was significantly higher in normal transplanting method (8.9% WMDL) as compared to semi-dry rice (4.4% WMDL). Low incidence of dead hearts (<3% DH), white ears (<5% WE), caseworm (<5% CWDL) and blue beetle (<1% BBDL) was observed in all the crop establishment methods.

Treatments	% DH	% WE		% SS		% WM	DL	% CWDL	%BBDL
	30 DAT	Pre	30 DAT	50 DAT	75 DAT	30 DAT	65 DAT	30 DAT	30 DAT
T1 - Lino cowing		0.4	22.0	7.6	20.7	5 1	7.1	3.0	
with drum seeder	(1.4)a	(0.9)a	(4.7)a	(2.8)a	(4.4)a	(2.4)ab	(2.7)ab	(1.7)a	(0.7)a
T2 = Direct	1.0	2.4	30.0	11.3	20.0	6.6	6.3	4.0	0.0
seeding	(1.2)a	(1.6)a	(5.2)a	(3.2)a	(4.5)a	(2.6)a	(2.6)ab	(1.8)a	(0.7)a
T3 = Normal	2.4	4.4	11.3	2.0	8.0	1.7	8.9	0.9	0.4
transplanting	(1.7)a	(2.1)a	(3.4)a	(1.5)a	(2.9)a	(1.4)b	(3.1)a	(1.1)a	(0.9)a
T4 = Semi-dry	1.2	0.9	17.3	6.9	18.2	5.5	4.4	1.1	0.6
rice	(1.2)a	(1.1)a	(4.1)a	(2.4)a	(4.3)a	(2.4)ab	(2.2)b	(1.2)a	(1.0)a
LSD (0.05)	0.78	1.88	3.55	2.39	2.32	1.07	0.61	1.53	0.71
CV(%)	20.22	26.72	28.82	34.28	20.51	17.08	8.1	37.57	30.44

Table 2.5.1.9 Influence of Crop Establishment Methods on Pest Incidence at Pattambi, Kharif 2023

Values in parenthesis are square-root transformed values, Means followed by the same letter in a column are not significantly different from each other

10. Pusa

Three establishment methods, puddled direct seeding, direct seeding and normal transplanting were assessed with Rajendra Bhagwati variety. At 30 DAT, dead heart damage was significantly high in direct seeding (33.3% DH) and was at par with puddled direct seeding (21.3% DH) as compared to normal transplanting (1.9% DH). The same trend was observed at 45 DAT also. However, at 75 DAT, the incidence of dead hearts was significantly high in puddled direct seeding (21.9% DH) compared to the other two methods (**Table 2.5.1.10**). White ear incidence was significantly low in normal transplanting (8.4% WE) as compared to direct seeding (14.8% WE). Leaf folder incidence varied from 9.8% to 13.8% and was at par in different crop establishment methods.

Table2.5.1.10 Influence of Crop Establishment Methods on Pest Incidence at Pusa, kharif 2023

Trastmonto		% [ЭН		% WE	% L	FDL
Treatments	30 DAT	45 DAT	75 DAT	90 DAT	Pre har	45 DAT	75 DAT
T1 = Puddled direct seeding	21.3(4.1)ab	15.9(4.0)a	21.9(4.7)a	25.6(5.0)a	12.7(3.6)ab	9.8(3.2)a	13.1(3.6)a
T2 = Direct seeding	33.3(5.7)a	21.7(4.7)a	12.5(3.5)b	15.9(4.0)a	14.8(3.9)a	13.8(3.7)a	10.9(3.3)a
T3 = Normal transplanting	1.9(1.2)b	5.6(2.0)b	8.9(3.0)b	11.7(3.4)a	8.4(3.0)b	10.0(3.2)a	12.8(3.6)a
LSD (0.05)	4.19	1.89	0.96	1.75	0.69	1.21	1.13
CV(%)	21.95	24.39	11.79	19.34	9.04	16.58	14.64

Values in parenthesis are square-root transformed values, Means followed by the same letter in a column are not significantly different from each other

11. Rajendranagar

RNR 15048 variety was grown in split plot design with three crop establishment methods as main plots and four weed management practices as sub-plots (**Table 2.5.1.11**). The three crop establishment methods include manual transplanting, puddled direct seeding by drum seeder, and unpuddled direct seeding by line sowing while the sub-plot treatments include weed-free, weedy check, mechanical weeding using weeder and chemical weed control. The incidence of dead hearts (<1% DH), white ears (<10% WE) and leaf folder (<1% LFDL) was very low in all the treatments and their interactions.

	Main plata	%DH	% WE	%LFDL
	main plots		Pre har	60 DAT
M1 = Manual tra	nsplanting	0.2(0.8)a	8.9(3.0)a	0.2(0.8)a
M2 = Puddled dir	rect seeding	0.0(0.7)a	5.3(2.3)a	0.2(0.8)a
M3 = Unpuddled	dry direct seeding - line sowing	0.02(0.7)a	0.8(1.0)b	0.02(0.7)a
	LSD (0.05)	0.09	1.56	0.19
	CV(%)	22.42	35.00	14.54
Sub-plots				
S1 = Weed free		0.03(0.7)a	5.4(2.1)a	0.2(0.8)a
S2 = Weedy che	ck	0.09(0.8)a	5.8(2.3)a	0.1(0.8)a
S3 = Mechanica	l weeding	0.04(0.7)a	4.7(2.1)a	0.1(0.8)a
S4 = Chemical w	veed control	0.09(0.7)a	4.2(1.9)a	0.1(0.8)a
	LSD (0.05)	0.14	1.89	0.06
	CV(%)	16.62	31.93	7.00
	Weed free	0.0(0.7)a	9.5(2.9)ab	0.3(0.9)a
M1 = Manual	Weedy check	0.3(0.9)a	9.5(3.1)a	0.2(0.8)a
transplanting	Mechanical weeding	0.1(0.8)a	8.4(3.0)ab	0.2(0.8)a
	Chemical weed control	0.3(0.9)a	8.3(2.9)ab	0.1(0.8)a
	Weed free	0.0(0.7)a	5.7(2.4)ab	0.2(0.9)a
M2 = Puddled	Weedy check	0.0(0.7)a	5.7(2.3)ab	0.2(0.9)a
direct seeding	Mechanical weeding	0.0(0.7)a	5.2(2.2)ab	0.1(0.8)a
	Chemical weed control	0.0(0.7)a	4.6(2.2)ab	0.3(0.9)a
M2 -	Weed free	0.1(0.8)a	0.9(1.1)ab	0.05(0.7)a
IVI3 =	Weedy check	0.0(0.7)a	2.2(1.5)ab	0.0(0.7)a
direct cooding	Mechanical weeding	0.0(0.7)a	0.6(1.0)ab	0.05(0.7)a
	Chemical weed control	0.0(0.7)a	0.4(0.5)b	0.0(0.7)a
	LSD (0.05) M in S	0.16	0.19	0.09
	LSD (0.05) S in M	0.14	0.20	0.08

Table 2.5.1.11 Influence of Crop Establishment Methods on Pest Incidence at Rajendranagar, KI	harif
2023	

Values in parenthesis are square-root transformed values, Means followed by the same letter in a column are not significantly different from each other

12. Titabar

Four establishment methods, *viz.*, mechanical transplanting, direct seeding, normal transplanting and aerobic rice were assessed with Shraboni variety (**Table 2.5.1.12**). The incidence of stem borer, gall midge, leaf folder, whorl maggot and caseworm was low in all the four methods of crop establishment methods.

Establishment methods	% DH	% WE	%SS	% LFDL	% WMDL	% CWDL
	60 DAT	Pre harvest	45 DAT	60 DAT	45 DAT	45 DAT

Mechanical transplanting	4.2(1.9)a	8.1(2.9)a	4.0(1.9)a	2.3(1.5)ab	2.9(1.7)a	3.0(1.7)a
Direct seeding	6.4(2.6)a	4.3(2.2)ab	0.0(0.7)a	4.0(2.1)a	4.6(2.1)a	3.6(1.9)a
Normal transplanting	2.5(1.6)a	2.5(1.6)b	3.3(1.7)a	2.1(1.5)ab	2.4(1.6)a	3.3(1.9)a
Aerobic rice	3.9(2.0)a	2.7(1.6)ab	4.2(2.1)a	0.2(0.8)b	0.2(0.8)a	3.0(1.8)a
LSD (0.05)	1.52	1.31	1.46	1.11	1.54	1.02
CV(%)	20.31	33.84	28.73	20.05	23.19	29.84

Values in parenthesis are square-root transformed values, Means followed by the same letter in a column are not significantly different from each other

Across locations, the incidence of stem borer, gall midge, leaf folder, whorl maggot, hispa, caseworm, thrips, blue beetle, brown planthopper and white-backed planthopper was observed in all the crop establishment methods during *Kharif* 2023. The incidence of dead hearts was high in puddled direct seeding (12.9% DH) and was at par with direct seeding (12.1% DH) and aerobic rice as compared to other methods (**Figure 2.5.1.1**). The incidence of white ears was significantly higher in aerobic rice (11.4% WE) followed by mechanical transplanting (10% WE). White ear incidence was low in semi-dry rice, normal transplanting and puddled direct seeding. Gall midge incidence was significantly high in semi-dry rice (14.1% SS) and very low in puddled direct seeding, mechanical transplanting, normal transplanting and aerobic rice.

Figure2.5.1 Incidence of stem borer and gall midge in different crop establishment methods across locations

Among the foliage-feeding insects, leaf folder incidence was significantly high in semi-dry rice (14.2% LFDL) and low in mechanical transplanting (2.6% LFDL). The incidence of whorl maggot (4.5% WMDL), hispa (7.3% HDL) and caseworm (3.8% CWDL) were significantly high in direct seeding as compared to other establishment methods (**Figure 2.5.1.2**). The incidence of thrips was significantly high in puddled direct seeding (11.7% THDL) and was at par with normal transplanting (11.2% THDL) compared to direct seeding (0.8% THDL). Incidence of blue beetle was low in normal transplanting and semi-dry rice (<1% BBDL).

Figure 2.5.2 Incidence of foliage-feeding insects in different crop establishment methods across locations

Among the sucking pests, a low incidence of BPH (<4/5 hills) and WBPH (<6/5 hills) was observed in all four crop establishment methods such as direct seeding, normal transplanting, mechanical transplanting and aerobic rice (**Figure 2.5.1.3**).

Influence of crop establishment methods on pest incidence (IEMP), a collaborative trial with Agronomy, was conducted at 12 locations during Kharif 2023. Across the locations, the incidence of dead hearts (12.1%) and white ears (11.4%) caused by stem borer was significantly high in aerobic rice followed by direct seeding and

puddled direct seeding. Gall midge (14.1% SS) and leaf folder (14.2% LFDL) incidence was significantly high in semi-dry rice followed by direct seeding. The incidence of thrips was significantly high in puddled direct seeding (11.7% THDL) and was at par with normal transplanting (11.2% THDL). The incidence of caseworm, blue beetle, BPH and WBPH was low in all the establishment methods. Overall, the incidence of insect pests was high in aerobic rice followed by direct seeding and semi-dry rice while the incidence was low in normal transplanting and mechanical transplanting methods of crop establishment.

2.5.2 Cropping Systems Influence on Pest Incidence (CSIP)

Cropping systems have a significant impact on the prevalence, carryover and spread of insect pests. The predominant agricultural systems in India are rice-based systems that rotate with cereals, pulses, cotton, and vegetables. Farmers are implementing water-saving techniques like aerobic rice, dry direct seeding, and wet direct sowing as a result of labour and water shortages. In rice-based cropping systems, the addition of crop residues is also recognised to benefit Rabi crops. Since rice straw has a potassium content of 1 to 2%, adding rice straw to crops that are cultivated after rice provides a good supply of nutrients. With this in view, a trial on the cropping system's influence on pest incidence (CSIP) was continued in collaboration with the Agronomy section (CA/SM 1- Conservation Agriculture/ System based management practices in rice and rice-based cropping systems to utilise resources and enhance the productivity and profitability) to evaluate the influence of different rice crop establishment methods under different residue management strategies to improve the overall productivity of the rice-based cropping system.

The field trial was laid out in a split-plot design with three replications. Main plot treatments comprised of three different crop establishment methods (M1: Transplanting, M2: Wet seeding (line sowing under puddled conditions), and M3: Aerobic rice – Dry rice cultivation). The subplot treatments comprised of three different Residue/straw management techniques, *viz.*, S1: No residue, S2: Incorporation of 15 cm height of rice straw from the ground, S3: Incorporation of 30 cm height of rice straw from the ground, to be superimposed for *Rabi* crops. During *Kharif* 2023, the trial was conducted at three locations, Ghaghraghat, Karjat and Titabar. The results are summarized below.

At **Ghaghraghat**, the incidence of stem borer and leaf folder was recorded in NDR 2065 variety in all the treatments. The incidence of dead hearts caused by stem borer was at par in all the main plots, subplot treatments and their interactions. However, white ear heads were significantly high in aerobic rice (15.9%WE) and were at par with wet seeding (14.8% WE) followed by normal transplanting (11.3% WE). Leaf folder damage was significantly high in the transplanting method (11.3% LFDL) compared to other main plot treatments (**Table 2.5.2.1**).

At **Karjat**, a low incidence of stem borer and leaf folder was observed in all three methods of rice cultivation (**Table 2.5.2.2**).

			DH (%)		WE (%)		LFDL (%)	
Treatments	6	45 DAT	60 DAT	75 DAT	Pre harvest	45 DAT	60 DAT	75 DAT
Main plots								
M1= Transplanting		12.5(3.6)ª	13.0(3.6)a	11.4(3.4)a	11.3(3.4)b	9.6(3.1)a	11.3(3.4)a	10.0(3.2)a
M2 = Wet seeding		9.0(2.6) ^a	11.5(3.4)a	11.2(3.4)a	14.8(3.9)ab	5.1(2.3)a	4.2(2.2)c	3.1(1.9)b
M3 = Aerobic rice		15.2(3.9) ^a	17.0(4.1)a	15.8(4.0)a	15.9(4.0)a	6.9(2.5)a	7.3(2.8)b	3.5(2.0)b
LSD (0.05)		1.76	1.19	0.98	0.60	1.46	0.46	0.31
CV (%)		40.91	25.16	21.45	12.44	43.06	13.00	10.41
Sub plots								
S1 = No residue		10.9(3.2) ^b	13.6(3.7) ^a	12.9(3.6)a	13.1(3.6)a	7.4(2.7)a	7.6(2.8)a	5.8(2.4)a
S2 = 15 cm ht. of rice	e straw	13.6(3.5)ª	14.1(3.7)ª	12.7(3.6)a	14.9(3.9)a	7.0(2.6)a	7.5(2.8)a	5.3(2.3)b
LSD (0.05)		0.31	0.31	0.28	0.35	0.10	0.15	0.06
CV (%)		11.48	10.55	9.95	11.63	4.65	6.60	3.23
M4 - Tropoplanting	S1	11.0(3.4) ^a	12.3(3.5) ^a	11.8(3.5)a	9.9(3.2)a	10.2(3.2)a	11.4(3.4)a	10.8(3.3)a
wite transplanting	S2	14.0(3.8) ^a	13.7(3.7) ^a	11.0(3.4)a	12.8(3.6)a	9.0(3.1)a	11.1(3.4)a	9.3(3.1)b
	S1	9.0(2.6) ^a	11.5(3.4) ^a	11.2(3.4)a	13.1(3.7)a	5.1(2.3)a	4.2(2.2)b	3.1(1.9)c
wz = wet seeding	S2	9.0(2.6) ^a	11.5(3.4) ^a	11.2(3.4)a	16.5(4.1)a	5.1(2.3)a	4.2(2.2)b	3.1(1.9)c
M2 - Aprobio rico	S1	12.6(3.6) ^a	17.0(4.1) ^a	15.8(4.0)a	16.2(4.1)a	6.9(2.5)a	7.3(2.8)ab	3.5(2.0)c
	S2	17.9(4.3) ^a	17.0(4.1) ^a	15.8(4.0)a	15.5(4.0)a	6.9(2.5)a	7.3(2.8)ab	3.5(2.0)c
	M in S	0.82	0.83	0.76	0.93	0.26	0.39	0.16
LOD (0.00)	S in M	2.33	1.64	1.37	1.01	1.88	0.65	0.42

Table 2.5.2.1 Influence of cropping systems on pest incidence at Ghaghraghat,	Kharif
2023	

Figures in parenthesis are square root Transformed values. Means in a column followed by same letter are not significantly different from each other.

Table 2.5.2.2 Influence	of cropping	systems on p	best incidence a	at Karjat,	Kharif 2023
-------------------------	-------------	--------------	------------------	------------	-------------

Tractmente	% DH	% WE	% LFDL
Treatments	60 DAT	Pre har	75 DAT
M1= Aerobic rice	6.2(2.6) ^a	8.3(2.9)a	2.3(1.7)a
M2 = Wet seeding	2.1(1.5) ^a	6.1(2.5)a	2.3(1.7)a
M3 = Transplanting	3.9(2.1) ^a	5.5(2.4)a	1.5(1.4)a
LSD (0.05)	1.47	1.43	0.96
CV (%)	24.35	18.73	20.81

Figures in parenthesis are square root Transformed values. Means in a column followed by same letter are not significantly different from each other

At **Titabar**, Shraboni variety was grown in all three establishment methods of main plots and residue treatments of subplots. Low incidence of stem borer, leaf folder, whorl maggot and caseworm was reported in all the treatments (**Table 2.5.2.3**). The incidence of coccinellids, spiders and mirid bugs was observed in all the main plots and sub-plot treatments.

Across the locations, the incidence of dead hearts was significantly higher in the subplot with a 15 cm height of rice straw in the transplanting method (12.4% DH) followed by aerobic rice (11.4% DH) (**Figure 2.5.2.1**). White ear damage was significantly higher in no residue treatment of aerobic rice (10.8% WE) which was at par with subplot 2 with 15 cm height of rice straw in wet seeding (10.4% WE).

Leaf folder damage was significantly high in the no residue treatment of the transplanting method (10.5% LFDL).

Table 2.5.2.3 Infl	uence of cr	opping syst	ems on pest	incidence at	Titabar, <i>Kha</i> l	rif 2023
Treetmon	to	% DH	% WE	% LFDL	%WMDL	%CWDL
Treatment	15	45 DAT	Pre har	30 DAT	30 DAT	45 DAT
Main plots						
M1= Transplanting		7.1(2.6)a	5.9(2.5)a	9.5(3.0)a	1.6(1.2)a	0.0(0.7)b
M2 = Wet seeding		6.4(2.5)a	4.6(2.2)a	5.3(2.3)b	0.8(0.9)a	1.2(1.1)b
M3 = Aerobic rice		5.1(2.3)a	4.6(2.2)a	5.7(2.3)b	1.6(1.3)a	3.3(1.8)a
LSD (0.05	5)	0.48	0.63	0.45	0.50	0.51
CV (%)		18.58	26.57	17.1	41.88	40.47
Sub plots						
S1 = No residue		6.2(2.5)a	4.6(2.2)ab	7.8(2.8)a	1.0(1.0)a	1.2(1.1)a
S2 = 15 cm ht. of rice	straw	6.7(2.5)a	4.1(2.0)b	7.6(2.6)a	2.0(1.4)a	1.1(1.0)a
S3 = 30 cm ht of rice	straw	5.7(2.4)a	6.3(2.6)a	5.1(2.2)a	1.0(1.1)a	2.2(1.5)a
LSD (0.05	5)	0.73	0.41	0.69	0.53	0.46
CV (%)		32.26	19.71	29.87	50.43	42.07
	S1	4.0(2.0)a	4.6(2.2)a	10.7(3.3)a	2.9(1.7)a	0.0(0.7)b
M1= Transplanting	S2	10.8(3.3)a	5.9(2.5)a	9.7(3.1)ab	1.9(1.3)a	0.0(0.7)b
	S3	6.7(2.5)a	7.2(2.7)a	8.2(2.8)abc	0.0(0.7)a	0.0(0.7)b
	S1	7.6(2.8)a	3.8(2.0)a	7.4(2.8)abc	0.0(0.7)a	0.0(0.7)b
M2 = Wet seeding	S2	4.7(2.1)a	4.3(2.1)a	3.5(1.8)bc	2.3(1.4)a	0.0(0.7)b
	S3	6.9(2.7)a	5.6(2.4)a	5.0(2.2)abc	0.0(0.7)a	3.6(1.9)a
	S1	7.0(2.7)a	5.4(2.4)a	5.1(2.3)abc	0.0(0.7)a	3.6(1.9)a
M3 = Aerobic rice	S2	4.8(2.1)a	2.2(1.6)a	9.7(3.1)abc	1.9(1.3)a	3.2(1.7)ab
	S3	3.7(2.0)a	6.1(2.5)a	2.3(1.5)c	3.0(1.8)a	3.0(1.8)ab
LSD (0.05)	M in S	1.72	0.96	1.62	1.25	1.09
	S in M	1.55	1.19	1.47	1.24	1.14

Figures in parenthesis are square root Transformed values. Means in a column followed by same letter are not significantly different from each other

Figure 2.5.2.1 Influence of cropping systems on insect pest incidence across locations, Kharif 2023

Cropping system influence on insect pest incidence (CSIP), a collaborative trial with Agronomy was conducted at three locations, Ghaghraghat, Karjat and Titabar during

Kharif 2023. Low incidence of stem borer, leaf folder, whorl maggot, and case worm was observed in different main plots of crop establishment methods and sub-plots of straw incorporation techniques at all the locations.

2.5.3 Evaluation of Pheromone Blends for Insect pests of Rice (EPBI)

Monitoring insect pests is a critical component in developing methods for Integrated Pest Management in rice. Pheromones have great promise in the surveillance and management of insect pests in rice. Because pheromones are safe against natural enemies and specific to insect pests, they work well with other strategies in an integrated pest management (IPM) plan. The evaluation of normal and slow-release pheromone blends against yellow stem borer and leaf folder was the primary aim of this ongoing trial on pheromone blends for insect pests of rice.

The trial was conducted at 13 locations in *Kharif* 2023 and one location during *Rabi* 2022-2023. The field trial was constituted with two formulations, *viz.*, normal and slow-release formulations of yellow stem borer (YSB) and rice leaf folder (RLF). All the lures were placed randomly in delta traps, and installed in the field and each blend was replicated five times. Observations were recorded on adult catches in each trap at weekly intervals, after the installation of traps. Simultaneously, field population counts were taken through visual count for stem borers, disturb and count method (DCM) for leaf folder, sweep net catches and light trap (LT) catches for both the pests.

The yellow stem borer cumulative catches were high in slow-release pheromone formulations as compared to normal pheromone formulation at 9 locations (**Figure 2.5.3.1**). The catch was low in slow-release formulation at Pusa while it was at par in both the formulations at Karaikal, Maruteru and Navsari.

Figure 2.5.3.1: Evaluation of Yellow stem borer pheromone formulations at different locations, Kharif 2023

However, the incidence of stem borer was low at Aduthurai, Combatore, Jagdalpur, Karaikal, Maruteru, and Raipur. The peak mean catch was high in slow-release pheromone formulation at Chinsurah (44.2/week) followed by Jagtial

(29.6/week). Visual count was high at Pusa (26/week) while sweep-net counts were high at Jagtial (26.6/week) and Pusa (26.3/week) and were significantly different from other locations.

The peak leaf folder catch was significantly high in slow-release pheromone formulation at Chinsurah (45.8/week) followed by Navsari (26.4/week) compared to normal pheromone formulation (**Figure 2.5.3.2**). The catch was low at Aduthurai, Cimbatore, Jagdalpur, Karaikal, Maruteru, Pusa and Pattambi in both the pheromone formulations to draw valid conclusions. The adult counts were high at Raipur in disturb and count method (42/week) while sweep-net count was high at Titabar (38.4/week).

Figure 2.5.3.2 Evaluation of rice leaf folder, *Cnaphalocrocis medinalis* pheromone formulations at various locations, *Kharif* 2023

Evaluation of pheromone blends for insect pests of rice (EPBI) trial was conducted at 13 locations during Kharif 2023. The field trial was constituted with normal and slow-release formulations of yellow stem borer and rice leaf folder. The slow-release formulations recorded maximum catches compared to the normal formulations in the case of yellow stem borer and leaf folder across locations. The peak mean catches of yellow stem borer were high in slow-release pheromone formulation at Chinsurah (44.2/week) followed by Jagtial (29.6/week). Similarly, rice leaf folder catches were high at Chinsurah (45.8/week) followed by Navsari (26.4/week) compared to normal pheromone formulations.

2.6 EVALUATION OF ENTOMOPATHOGENES AGAINST SUCKING PESTS OF RICE

The trial was initiated in 2022 with the objective of evaluating effective entomopathogens against sucking pests of rice, identified though the AICRP on biocontrol programme, at multi-locations and hotspots. The trial tested the efficacy of different treatments in controlling sucking pests and influencing crop yields. The treatments include biological control agents (*Lecanicillium saksenae, Beauveria bassiana*, and *Metarhizium anisopliae*), a chemical pesticide (*Thiamethoxam*), and a control group with no treatment. During kharif 2023, the trial was taken up at eleven centres *viz.*, Brahmavar, Chatha, Coimbatore, Gangavati, Karjat, Ludhiana, Mandya, Moncompu, Navasari, Raipur and Ranchi.

1. Brahmavar

The number of ear head bugs at seven days after first spray was significantly lower with *Lecanicillium saksenae* treatment (0.85/ 5 hills) followed by *Beauveria bassiana* (1.00) compared with 3.60 bugs in untreated control (**Table 2.6.1**). At 15 days after first spray, the least number of ear head bugs were observed in *L*. *saksenae* sprayed plots (0.50/ 5 hills). Seven days after second spray, all the treatments showed significantly lesser number of ear head bugs compared to control (3.40), the least being observed with *L. saksenae* (0.70/5 hills). Similar trend was observed after second spray wherein all treatments showed significantly decreased number of ear head bugs, as compared to untreated control (16.25/25 hills). *Metarhizium anisopliae* with a population of 1.60 and 2.40/5 hills 15 days after first and second spray was the least effective among the bioagents tested Overall, *L. saksenae* was the most effective treatment.

The number of mirid bugs was significantly higher in the entomopathogen treatment plots. The highest number of mired bugs were observed in the control and *Beauveria bassiana* treated plots (5.0/ plot). The number of spiders per plot was significantly higher in control and *B. bassiana* treatments (5.00) followed by. *L. saksenae* (4.25). The number of coccinellids was significantly higher per plot in *B. bassiana* and *L. saksenae* treated plots (2.25). Overall, the natural enemy count was significantly higher in control followed by *L. saksenae*, *B. bassiana* and *M. anisopliae* treatments. Thiamethoxam registered lowest number of natural enemies. The highest yield was observed with *L. saksenae* treatment (4635.73 kg/ha) followed by thiamethoxam (4600.15 kg/ha. The least yield was observed in the control plot with 4199.05 kg/ha.

2. Chatha

Observations were recorded on populations of grasshoppers, white leafhopper, green leafhopper and gundhi bug. The population was low and did not differ among treatments. Population of gundhi bugs ranged from 1-2 individuals per sweep in all treatments. The yield was 2768.00, 2644.25, 2673.75, 2788.50, and

			No. of Ear he	ad bugs / 5 hills			Natura	al enemies N	o./ plot	
Treatment		I SPRAY		-	I SPRAY		Minial Lines	on of the second	- Lillening	Yield /kg/ha) *
	ЪС	7 DAS	15 DAS	21 DAS/PC	7 DAS	15 DAS	Milfia pugs	opiders	coccinellias	(billigu)
Lecanicillium saksenae @ 1 x 107 cfu ml		0.85	0.50	0:90	0.70	0.45	3.25	4.25	3.00	1696 70
-1 KAU 7714 (20 g talc formulation/ L)	2.30	(1.16)	(66.0)	(1.18)	(1.09)	(0.99)	(1.90)	(2.17)	(1.86)	6 / . CCOH
Beauveria bassiana @1 x 108 cfu ml ⁻¹	096	1.00	0.80	1.20	1.00	0.60	5.00	5.00	3.00	1000 00
NBAIR Bb 5 (20 g talc formulation / L)	7.00	(1.22)	(1.14)	(1.38)	(1.22)	(1.05)	(2.34)	(2.34)	(1.86)	4020.20
Metarhizium anisopliae @ 1 x 108 cfu ml	00 6	1.40	1.60	2.20	2.00	2.40	4.00	3.00	2.00	ADEE OO
-1 NBAIR Ma 4 (20 g talc formulation / L)	00.0	(1.37)	(1.45)	(1.64)	(1.58)	(1.70)	(2.12)	(1.86)	(1.56)	4000.40
Thiomothorrom	00 6	1.20	0.80	1.40	1.00	0.80	2.75	3.00	2.00	1600 1E
	00.0	(1.38)	(1.14)	(1.38)	(1.22)	(1.14)	(1.79)	(1.86)	(1.56)	4000.10
	00 6	3.60	3.40	4.00	3.40	3.20	2.00	5.00	2.00	1100.05
COLITION	0.00	(2.03)	(1.98)	(2.12)	(1.98)	(4.09)	(1.56)	(2.34)	(1.56)	4133.03
SED		0.02	0.04	0.03	0.03	0.02	0.12	0.08	0.07	20.58
CD (0.05)	SN	0.05**	0.11**	0.09**	**60.0	0.07**	0.38**	0.23**	0.23**	62.87**
inurae in naranthaeis ara sourara root transfor	mad' DC - nre	COUNT DAC	- dave after e	raving: *oxtranol	atad					

Table 2.6.1 Effect of entomopathogens on sucking pests and their natural enemies at Brahmavar, EESP, kharif 2023

Figures in parenthesis are square root transformed; PC- pre-count; DAS- days after spraying; *extrapolated

Table 2.6.2 Effect of entomopathogens on sucking pests and their natural enemies at Coimbatore, EESP, kharif 2023

		No. of Ea	rr head bugs	/ 5 hills		Natu	ral enemies No	o./ plot	
Treatment		I SPRAY		II SP	RAY	Mivid burge	Cridoro	Continued	Yield (ka/ha) *
	РС	7 DAS	15 DAS	7 DAS	15 DAS	Millin pugs	opiders	COCCILIENTICS	(billign)
Lecanicillium saksenae @ 1 x 107 cfu ml -1	10 7E	11.25	11.75	7.25	4.75	7.25	12.00	15.00	6770
KAU 7714 (20 g talc formulation/ L)	01.01	(3.41)	(3.49)	(2.78)	(2.29)	(2.76)	(3.53)	(3.92)	7110
Beauveria bassiana @1 x 108 cfu ml-1	01 7E	19.50	18.50	9.25	6.25	6.75	13.00	14.00	5504
NBAIR Bb 5 (20 g talc formulation / L)	C1.47	(4.43)	(4.34)	(3.11)	(2.59)	(2.66)	(3.65)	(3.79)	1000
Metarhizium anisopliae @ 1 x 108 cfu ml -1	00 66	10.25	8.50	5.00	1.75	7.00	13.75	14.50	2000
NBAIR Ma 4 (20 g talc formulation / L)	22.00	(3.24)	(2.99)	(2.33)	(1.40)	(2.71)	(3.76)	(3.83)	0700
Thiomothomothomothomothomothomothomothomo	JE EU	5.25	27.5	1.50	00'0	1.50	4.00	6.25	6000
ווומוופוווסאמוו	00.02	(2.38)	(2.50)	(1.34)	(0.71)	(1.34)	(2.11)	(2.59)	7000
, company		27.00	23.25	00.6	00'2	7.25	14.25	15.50	564 E
COILIU	24.30	(5.23)	(4.87)	(3.07)	(2.74)	(2.76)	(3.83)	(13.98)	C1 0C
SED	0.54	0.38	0.13	0.22	0.20	0.31	0.23	0.30	133.0
CD (0.05)	NS	1.17	.39**	0.68**	0.62**	0.93**	0.66**	0.85**	NS

Figures in parenthesis are square root transformed; PC- pre-count; DAS- days after spraying; *extrapolated

2686.00 kg/ha in *L. saksenae, B. bassiana, Metarhizium anisopliae*, thiamethoxam and control plots respectively.

3. Coimbatore

The number of ear head bugs at seven days after first spray was significantly lower in thiamethoxam (5.25/25 hills) while among bioagents, *M. anisopliae and L. saksenae* treatments (10.25 and 11.25/25 hills) had the lowest population (Table 2.6.2). Similar trend was observed at 15 days after first spray. After two sprays no bugs were observed in thiamethoxam treatment. Overall, *M. anisopliae* was the most effective treatment among bioagents. Overall, the natural enemy count was significantly higher in control followed by *L. saksenae*, *B. bassiana* and *M. anisopliae* treatments which were all on par. Thiamethoxam registered lowest number of natural enemies (**Table 2.6.2**). The number of mirid bugs was highest in the control and *L. saksenae* treated plots (7.25/plot) whereas significantly lower number of mired bugs were found in thiamethoxam treatment (1.50/plot). Similar trend was observed for number of spiders and coccinellids per plot (**Table 2.6.2**). The highest yield was observed in thiamethoxam treated plots (6032 kg/ha) though statistically on par with other treatments.

4. Gangavathi

The population of hoppers was lowest thiamethoxam (22.58/25 hills) and on par with *L. saksanae* (29.03/25 hills) 7 days after first spray as compared to 44.42/25 hills in untreated control (**Table 2.6.3**). Chemical control was the most effective 15 days after second spray though all bioagents could bring down the population significantly. The least effective bioagent against hoppers was *B. bassiana* (**Table 2.6.3**).

The number of ear head bugs after first spray was significantly lower in all treatments as compared to untreated control, but the chemical thiamethoxam recorded significantly lowest population of bugs (2.99 and 2.14/25 hills) at 7 and 15 days after first spray and reached nil population 15 fays after second spray **(Table 2.6.3).** 15 days after second spray, *M. anisopliae* treated plots had the lowest population of 1.75/25 hills. The population of mired bugs, spiders and coccinellids were significantly lower in thiamethoxam treated plots (3.23, 1.12 and 0.66/m² respectively) **(Table xx)** while they were on par in all other treatments including untreated control (12.17, 5.34 and 3.32/m² respectively) indicating minimal or no impact on natural enemy population **(Table 2.6.3).** The yields were significantly lower in control plot (2698.50 kg/ ha) while it was significantly higher in *L. saksanae* treatment (7512.75 kg/ ha) **(Table 2.6.3).**

5. Karjat

The number of ear head bugs at seven days after second spray was significantly lower with thiamethoxam and *L. saksenae* treatments (1.25 and 3.50/ 25 hills respectively) **(Table 2.6.4)**. At fifteen days after second spray, the least number of ear head bugs were observed in *L. saksenae* sprayed plots (1.50 / 25 hills) while

7281.75 7512.75 6368.25 6137.25 (kg/ha) Yield Coccinellid 3.02 (1.87) 3.07 (1.89) 2.95 (1.86) 0.66 (1.07) No. of natural enemies/m² Spider 4.30 4.93 1.12 4.91 Mirid 11.14 10.26 10.90 3.23 **15 DAS** 11.74 15.04 11.32 8.57 **II SPRAY** 7 DAS 18.527 23.08 18.33 10.53 No. of hoppers/ 25 hills **15 DAS** 28.03 23.22 22.80 15.53 **I SPRAY** 7 DAS 29.03 33.29 22.58 28.11 40.71 40.46 41.34 40.07 R 7 DAS 15 DAS 4.75 (2.29) 6.25 (2.59) 1.75 (1.40) 0.00 (0.71) **II SPRAY** No. of Ear head bugs / 25 hills 2.40 (1.70) 2.35 (1.69) 3.06 (1.88) 1.82 (1.52) **15 DAS** 3.10 (1.89) 3.53 (2.00) 2.88 (1.83) 2.14 (1.62) **I SPRAY** 7 DAS 4.38 (2.21) 3.63 (2.03) 2.99 (1.86) 3.94 (2.10) 4.57 4.58 4.62 4.61 R x 108 cfu ml -1 NBAIR Ma 4 Metarhizium anisopliae @ Lecanicillium saksenae @ Beauveria bassiana @1 x 108 cfu ml-1 NBAIR Bb 5 x 107 cfu ml -1 KAU 7714 (20 g talc formulation / L) 20 g talc formulation / L) (20 g talc formulation/ L) Treatment Thiamethoxam

Table 2.6.3 Effect of entomopathogens on sucking pests and their natural enemies at Gangavathi, EESP, *kharif* 2023

Figures in parenthesis are square root transformed; PC- pre-count; DAS- days after spraying; *extrapolated

0.22 0.07

0.16*

CD (0.05)

0.07

1221.80**

0.16**

0.80**

1.00**

5.76** 1.89

13.02**

8.21**

7.64*

SN

3.51

2698.50 399.99

3.32 (1.95) 0.53

5.34 0.57

12.17 0.33

59.11

54.87 4.26

47.84 2.69

44.42

40.97

6.29 (2.60) 0.08 0.24

6.29 (2.60)

(2.51)

(2.41)

4.53 0.08 NS

Control SED

5.82

5.31

0.05 0.10

C	\mathbf{r}	
	Z	
	2	
	ŧ	
	a	
	Ş	
	ק	
ì	й	
	Ц	
•	Ľ,	
•	Ë	
	a	
	<u>×</u>	
	ສ	
	ŝ	
	Ĕ	
	eD	
	Š	
	Ð	
	Ľ a	
	E	
	Ja	
	_	
	Ð	
	Ę	
	σ	
	g	
	ഗ	
•	sts	
•	oests	
	g pests	
	ing pests	
	king pests	
	ucking pests	
	sucking pests	
	on sucking pests	
	s on sucking pests	
-	ens on sucking pests	
-	gens on sucking pests	
-	logens on sucking pests	
	athogens on sucking pests	
	pathogens on sucking pests	
	nopathogens on sucking pests	
	omopathogens on sucking pests	
	ntomopathogens on sucking pests	
	entomopathogens on sucking pests	
	of entomopathogens on sucking pests	
	It of entomopathogens on sucking pests	
	ect of entomopathogens on sucking pests	
	Effect of entomopathogens on sucking pests	
	Effect of entomopathogens on sucking pests	
	5.4 Effect of entomopathogens on sucking pests	
	2.6.4 Effect of entomopathogens on sucking pests	
	e Z.6.4 Effect of entomopathogens on sucking pests	
	ble 2.6.4 Effect of entomopathogens on sucking pests	

		No. of E	ar head bugs / 2	5 hills		on of the second s	PI-2X
Treatment		I SPRAY		II SPI	RAY	No / alot	TIEIO V 21/ho*
	РС	7 DAS	15 DAS	7 DAS	15 DAS	NO./ PIOL	Ng/IIa
Lecanicilium saksenae @ 1 x 107 cfu ml ⁻¹ KAU 7714 (20 g	24.00	17.50	9.50	3.50	1.50	7.75	1106 26
talc formulation/ L)	04.00	(4.23)	(3.15)	(2.29)	(1.35)	(2.86)	4400.20
Beauveria bassiana @1 x 108 cfu ml-1 NBAIR Bb 5 (20 g talc		26.00	17.25	6.25	4.75	6.50	C1 0211
formulation / L)	00.00	(5.13)	(4.22)	(2.59)	(2.24)	(2.64)	41/0.13
Metarhizium anisopliae @ 1 x 108 cfu ml -1 NBAIR Ma 4 (20	24.00	30.50	22.00	9.75	6.75	7.00	
g talc formulation / L)	04.00	(5.55)	(4.73)	(3.19)	(2.69)	(2.72)	4004.30
Thiomothorom	30 Z3	8.75	3.00	1.25	00.0	5.50	עבבר טב
I Mamerioxam	C7.1C	(3.02)	(1.84)	(1.27)	(0.71)	(2.43)	4000.20
Control	EE EV	64.25	67.00	78.75	80.50	8.50	00 1070
COLITIO	00.00	(8.05)	(8.21)	(8.90)	(8.99)	(2.99)	01.04.30
SED	0.35	0.28	0.30	0.30	0.21	0.17	53.19
CD (0.05)	SN	0.24**	0.91**	0.92**	0.64**	0.51*	162.46**
Figures in parenthesis are square root transformed; PC- pre-coun	nt; DAS- days afte	r spraying; *extra	polated				

2.77

it reached nil population in thiamethoxam treated plots. The other two bio-agents B bassiana and M anisopliae were also effective in reducing pest population (4.75 and 6.75/25 hills) as compared to Control (80.50). Overall, L. saksenae was the most effective treatment among bioagents. The natural enemy count was significantly higher in control followed by L. saksenae, B. bassiana and M. anisopliae treatments which were all on par. Thiamethoxam registered lowest number of natural enemies (Table 2.6.4). The highest yield was observed in thiamethoxam treated plots (4556.25 kg/ha) followed by L. saksenae treatment (4406 kg/ha).

6. Ludhiana

The population of hoppers was lowest thiamethoxam (46.50/ 25 hills) followed by *L. saksanae* (99.25/25 hills) 7 days after first spray as compared to 199.75/ 25 hills in untreated control (**Table 2.6.5**). Similar trends were observed 15 days after first and second spray. Chemical control was the most effective 15 days after second spray (20.5/25 hills) though all bioagents could bring down the population significantly. The most effective bioagent against hoppers was *L. saksanae* (73.50/25 hills) while the least effective was *B. bassiana* (107.00/ 25 hills) (**Table 2.6.5**). The spider count was significantly higher in control (14.25/ 10 hills) followed by *L. saksenae*, *B. bassiana* and *M. anisopliae* treatments which were all on par (10-10.5/ 10 hills). Thiamethoxam registered lowest number of natural enemies (**Table 2.6.5**). The highest yield was observed in thiamethoxam treated plots (7637.24 kg/ha) followed by *L. saksenae* treatment (7419.53 kg/ha).

7. Moncompu

Observations were recorded on population of green leafhopper, brown planthopper and ear head bug after imposing treatments. The population of leafhoppers ranged from 34.25-44.50/25 hills in untreated control. The population of hoppers was lowest thiamethoxam (15.75/25 hills) and on par with *L. saksanae* (15.00/25 hills) 7 days after first spray (**Table 2.6.6**). Similar trend was observed 7 and 15 days after second spray with thiamethoxam and *L. saksanae* having a population of 2 and 5 / 25 hills as compared to 37.25 in the control plot (**Table 2.6.6**). The population of brown planthopper ranged from 208.25 – 318.75/25 hills in untreated control. Population of planthoppers was on par and significantly lower in thiamethoxam and *L. saksanae* treated plots seven days after (85.25 and 84.25/ 25 hills respectively) and fifteen days after (45.00 and 54.5 / 25 hills) first spray (**Table 2.6.6**). On the other hand, 15 days after second spray, thiamethoxam had significantly lower population (16.50/25 hills) while the bioagent treated plots were on par but superior to untreated. *L. saksanae* was second most effective treatment with population ranging from 54.0-68.0/25 hills after second spray (**Table 2.6.6**).

Table 2.6.5 Effect of entomopathogens on sucking pests and their natural enemies at Ludhiana, EESP, kharif 2023

			No. of hopp	oers / 25 hil	ls		Sniders	Yield	
Treatment		I SPRAY			II SPRAY		No./ nlot	Ka/ha	
	ЪС	7 DAS	15 DAS	ЪС	7 DAS	15 DAS			
Lecanicillium saksenae @ 1 x 107 cfu ml ⁻¹ KAU 7714 (20 g talc formulation/ L)	177.75	99.25	90.25	103.25	78.50	73.50	10.00	7419.53	
Beauveria bassiana @1 x 108 cfu ml ⁻¹ NBAIR Bb 5 (20 g talc formulation / L)	180.75	120.00	113.50	152.75	111.00	107.00	10.00	6890.98	
Metarhizium anisopliae @ 1 x 108 cfu ml ⁻¹ NBAIR Ma 4 (20 g talc formulation / L)	185.75	108.25	104.00	121.00	96.50	92.00	10.50	7187.50	
Thiamethoxam	177.75	46.50	37.50	49.75	22.50	20.50	6.75	7637.24	
Control	180.75	199.75	219.50	226.25	232.50	248.00	14.25	6818.23	
SED	3.74	3.27	4.44	2.62	3.12	3.05	0.60	75.58	
CD (0.05)	NS	9.99**	13.56**	8.02**	9.51**	9.32**	1.84**	230.87	

Table 2.6.6 Effect of entomopathogens on hoppers at Moncompu, EESP, kharif 2023

			No. of G	LH / 25 hill	S				No. of B	PH/ 25 hills		
Treatment		I SPRAY			II SPRAY			I SPRAY			II SPRAY	
	ЪС	7 DAS	15 DAS	РС	7 DAS	15 DAS	ЪС	7 DAS	15 DAS	PC	7 DAS	15 DAS
Lecanicillium saksenae @ 1 x 107 cfu ml -1	37 V C	15.75	8.00	15.00	9.50	5.00	239.75	85.25	54.50	162.25	68.50	54.00
KAU 7714 (20 g talc formulation/ L)	04.70	(4.02)	(2.89)	(3.92)	(3.16)	(2.34)	(15.47)	(9.25)	(2.10)	(12.64)	(8.29)	(7.36)
Beauveria bassiana @1 x 108 cfu ml-1	30.10	21.75	11.75	13.75	10.00	7.00	218.25	95.25	76.50	132.75	71.75	60.00
NBAIR Bb 5 (20 g talc formulation / L)	04.40	(4.69)	(3.47)	(3.77)	(3.23)	(2.72)	(14.78)	(9.78)	(8.76)	(11.53)	(8.49)	(7.76)
Metarhizium anisopliae @ 1 x 108 cfu ml -1	05 EU	27.50	14.75	17.00	12.50	8.75	235.50	115.75	84.75	134.75	78.50	68.00
NBAIR Ma 4 (20 g talc formulation / L)	00.00	(5.28)	(3.90)	(4.16)	(3.58)	(3.02)	(15.35)	(10.75)	(9.23)	(11.61)	(8.87)	(8.24)
Thiomothoroom	10 50	15.00	7.50	13.50	6.50	2.00	230.50	84.25	45.00	121.25	47.50	16.50
	44.30	(3.92)	(2.81)	(3.73)	(2.63)	(1.50)	(15.19)	(9.20)	(6.70)	(11.00)	(6.91)	(4.04)
	21 75	40.50	44.50	35.25	37.25	37.25	242.50	295.00	346.50	264.25	312.00	324.00
	04.40	(6.39)	(6.70)	(5.97)	(6.13)	(6.14)	(15.57)	(17.16)	(18.61)	(16.24)	(17.67)	(18.00)
SED	0.07	0.32	0.26	0.30	0.28	0.26	0.58	0.48	0.48	0.86	0.37	0.46
CD (0.05)	NS	0.70*	0.78**	0.90**	0.87**	0.80**	NS	1.46**	1.46*	1.87**	1.13**	1.42**
			,									

Figures in parenthesis are square root transformed; PC- pre-count; DAS- days after spraying; *extrapolated

The population of ear head bugs ranged from 20.75 - 29.75/25 hills in untreated control. Population of bugs was significantly lower in thiamethoxam (14.75/25 hills) followed by *L. saksanae* treated plots (16.00/25 hills) seven days after first spray **(Table 2.6.7)**. On the other hand, 15 days after second spray, *L. saksanae* was the most effective and had significantly lower population (4.00 / 25 hills) even compared to thiamethoxam (7.25/25 hills). **(Table 2.6.7)**. The spiders and mirid population were on par in all treatments while coccinellids were higher in untreated control. The highest yield was observed in thiamethoxam treated plots (4900 kg/ha) followed by *L. saksenae* treatment (4800 kg/ha).

8. Mandya

At seven days after first spray number of earhead bugs was lowest thiamethoxam (2.14/25 hills) followed by *L. saksanae* (2.74/25 hills) 7 days after first spray as compared to 4.45/25 hills in untreated control **(Table 2.6.8)**. At 15 days after first spray, the least number of ear head bugs were observed in thiamethoxam sprayed plots (1.98/25 hills) followed by *L. saksenae* treated plots (2.26/25 hills). Similar trend was observed after second spray, wherein all the treatments showed significantly lesser number of ear head bugs compared to the control (5.70-6.14/25 hills). The least number of bugs was observed in chemical treatment followed by *L. saksenae* **(Table 2.6.8)**. The number of natural enemies *viz.*, spiders and coccinellids were lowest in thiamethoxam treatment (11.50 and 4.25 /plot respectively). The highest yield was observed with thiamethoxam treatment (7716 kg/ha), but the treatment *L. saksenae* was on par with chemical control (7032 kg/ha.

9. Navsari

All treatments were significantly more effective than untreated control which recorded 13.25 - 19.75 bugs per 10 hills. The number of ear head bugs was significantly lower with thiamethoxam treatment (4.00 - 7.00/10 hills) after first and second spray. The three bioagents did not differ significantly in their effectiveness after two sprays (**Table 2.6.9**). The population of natural enemies were highest in untreated control 9.75, 7.75 and 8.50 mirids, spiders and coccinellids per plot. Thiamethoxam registered lowest number of natural enemies. The three bioagent treatments were on par, with the highest population recorded in *L. saksanae* treatment with 9.75, 7.75 and 2.25 mirid bugs, spiders and coccinellids per plot. The highest yield was observed in thiamethoxam treatment (5392 kg/ha) but was statistically on par with other treatments (**Table 2.6.9**).

10. Raipur

All treatments were significantly more effective than untreated control which recorded 9.00 - 11.75 ear head bugs per 25 hills. The number of ear head bugs were lowest in the chemical treatment plots (1.25-6.25/25 hills). Nevertheless,

2 – Entomology
Vol.
ss Report 2023,
-IIRR Annual Progres
ICAR

		No. of E	Ear head bug	s / 25 hills		Natu	ral enemies N	o./ plot	17:77
Treatment		I SPRAY		II SP	RAY	Minial buco	Cuidene	Consistent	TIEIQ //~//~/ *
	PC	7 DAS	15 DAS	7 DAS	15 DAS		opiders	coccilienius	(Ng/IId)
Lecanicillium saksenae @ 1 x 107 cfu ml -1 KAU	JE ED	16.00	11.25	5.50	4.00	38.75	38.75	29.50	
7714 (20 g talc formulation/ L)	NC.02	(4.05)	(3.42)	(2.44)	(2.12)	(6.23)	(6.23)	(5.47)	4000.00
Beauveria bassiana @1 x 108 cfu ml-1 NBAIR Bb 5	20.05	18.25	10.50	7.25	6.75	43.25	43.25	27.25	1675 00
(20 g talc formulation \overline{I} L)	C7.67	(4.31)	(3.29)	(2.75)	(2.67)	(6.61)	(6.61)	(5.26)	4023.00
Metarhizium anisopliae @ 1 x 108 cfu ml -1 NBAIR	00 0E	18.00	12.25	7.75	6.25	34.50	34.50	22.75	1000
Ma 4 (20 g talc formulation / L)	67.07	(4.27)	(3.57)	(2.85)	(2.57)	(2.90)	(5.90)	(4.80)	4000.40
Thiomothorom	30 E0	14.75	11.50	8.25	7.25	40.25	40.25	24.50	
	00.00	(3.89)	(3.45)	(2.94)	(2.76)	(6.38)	(6.38)	(4.99)	4300.00
	JU 7E	28.50	27.00	20.75	21.75	44.75	44.75	32.50	1127 ED
	C1.67	(5.38)	(5.23)	(4.59)	(4.69)	(0.70)	(0.70)	(5.74)	00.1014
SED	0.22	0.33	0.26	0.28	0.30	0.32	0.32	0.23	95.68
CD (0.05)	NS	0.72*	0.78**	0.85**	0.92**	SN	NS	0.50*	292.28**
Figures in parenthesis are square root transformed; PC- pre	e-count; DAS-	days after (spraying; GLH	 green leafh 	opper; BPH- br	own planthoppei	r *extrapolated		
Table 2.6.8 Effect of entomopathogens on suc	king pests	and their	r natural en	emies at N	landya, EES	SP, kharif 202	23		

Table 2.6.7 Effect of entomopathogens on hoppers at Moncompu, EESP, kharif 2023

		~	Vo. of Ear hea	d bugs / 25 hills			Natural enemi	ies No./ plot	
Treatment		I SPRAY			II SPRAY				Yield
	PC	7 DAS	15 DAS	21 DAS/PC	7 DAS	15 DAS	opiaer	Coccinellia	(Ng/IIa)
Lecanicillium saksenae @ 1 x 107 cfu ml -1 KAU	27 C	2.74	2.26	2.85	2.05	1.42	19.00	14.75	
7714 (20 g talc formulation/ L)	0.47	(1.79)	(1.65)	(1.82)	(1.56)	(1.37)	(4.28)	(3.74)	00.2001
Beauveria bassiana @1 x 108 cfu ml-1 NBAIR Bb 5	631	3.86	3.59	4.74	3.92	3.04	29.50	11.00	1060.00
(20 g talc formulation / L)	4.03	(2.07)	(2.02)	(2.29)	(2.09)	(1.86)	(5.36)	(3.31)	4000.00
Metarhizium anisopliae @ 1 x 108 cfu ml -1 NBAIR	30 0	3.27	3.05	3.48	3.12	2.78	25.25	18.75	
Ma 4 (20 g talc formulation / L)	0.00	(1.93)	(1.88)	(1.99)	(1.89)	(1.81)	(4.96)	(4.23)	00.2000
Thismstheres	715	2.14	1.98	2.23	1.47	0.96	11.50	4.25	7716.00
	4.10	(1.60)	(1.57)	(1.63)	(1.40)	(1.20)	(3.38)	(1.99)	1/10.00
Control	10 C	4.45	5.12	5.36	5.70	6.14	42.75	27.00	2160.00
	0.01	(2.22)	(2.37)	(2.42)	(2.49)	(2.57)	(6.51)	(5.20)	2 100.00
SED	0.21	0.17	0.10	0.13	0.19	0.17	0.88	0.79	848.34
CD (0.05)	NS	0.39*	0.22*	0.27*	0.41*	0.37*	1.91*	1.72*	1848.38*
			-						

Figures in parenthesis are square root transformed; PC- pre-count; DAS- days after spraying;

		No. of I	Ear head bug	s / 25 hills		Natur	al enemies N	o./ plot		č
Treatment		I SPRAY		II SPR	tAY	Minial bines	Cuideue	Controlling	YIeld (ka/ha) *	Straw yield ko/ha
	PC	7 DAS	15 DAS	7 DAS	15 DAS	miria pugs	opiders	coccinellius		Ngilla
(senae @ 1 x 107 cfu ml -1 KAU	77 U	8.00	10.00	10.25	12.00	9.25	6.25	00 0	1071 20	7007 E2
ormulation/ L)	9.11	(2.90)	(3.23)	(3.28)	(3.53)	(3.12)	(2.60)	2.00	40/1.22	092.001
ana @1 x 108 cfu ml ⁻¹ NBAIR Bb 5	, c c	8.25	13.00	11.25	12.25	00.6	6.00	200	1007 50	VV V012
ation / L)	3.21	(2.95)	(3.67)	(3.42)	(3.56)	(3.08)	(2.55)	C7.7	4000.00	/ 104.44
sopliae @ 1 x 108 cfu ml -1 NBAIR	000	6.75	8.25	9.75	12.50	8.50	6.75		E4 47 OC	7152 00
ormulation / L)	0.30	(2.69)	(2.95)	(3.20)	(3.59)	(2.99)	(2.69)	0.00	00.741 C	100.001
	30.0	4.00	6.75	5.75	7.00	4.25	3.00	00 1	5200 16	01 1002
	0.30	(2.11)	(2.68)	(2.49)	(2.73)	(2.18)	(1.86)	00.1	01.2950	cn.1 071
	000	13.25	12.00	20.93	19.75	9.75	7.75	200	5000 22	7202 60
	0.32	(3.70)	(3.53)	(4.62)	(4.50)	(3.20)	(2.87)	C7.7	0200.00	00.0001
	0.11	0.16	0.16	0.17	0.21	0.13	0.10	0.21	152.77	102.00
	NS	0.49**	0.35*	0.52*	0.45*	0.28*	0.30*	NS	NS	NS

Table 2.6.9 Effect of entomopathogens on sucking pests and their natural enemies at Navsari, EESP, kharif 2023

Figures in parenthesis are square root transformed; PC- pre-count; DAS- days after spraying; *extrapolated

Table 2.6.10 Effect of entomopathogens on sucking pests and their natural enemies at Raipur, EESP, kharif 2023

		No. of	Ear head bug	js / 25 hills		Na	tural enemies N	o./ plot		7
Treatment		I SPRAY		HAS II	tAY	Cuidona	Ground	Continuindo	Rove	YIeld (ka/ha) *
	РС	7 DAS	15 DAS	7 DAS	15 DAS	sianide	beetles	COCCILIEILIUS	beetles	(BIIIR)
Lecanicillium saksenae @ 1 x 107 cfu ml -1 KAU	A 75	4.50	2.00	6.25	3.00	3 00	3 25	3 75	3 25	6768 75
7714 (20 g talc formulation/ L)	2	(2.22)	(1.58)	(2.59)	(1.86)	0.00	04.0	0.0	0.4.0	04.0040
Beauveria bassiana @1 x 108 cfu ml-1 NBAIR Bb 5	U EO	3.75	2.75	7.75	5.75	7 EN	00 6	2 50	2 7E	6100.00
(20 g talc formulation / L)	4.00	(2.06)	(1.80)	(2.87)	(2.49)	00.2	00.0	00.0	0.7.0	0100.00
Metarhizium anisopliae @ 1 x 108 cfu ml -1 NBAIR	E 00	4.50	2.25	6.25	4.75	0 7E	1 75	2 7E	1 75	6167 ED
Ma 4 (20 g talc formulation / L)	00.0	(2.22)	(1.65)	(2.59)	(2.28)	C1.7	62.4	0.10	67.4	00.2010
Thiomothorom	200	3.00	1.25	6.25	2.50	0 JE	2 60	1 00	1 00	6610 7E
	0.00	(1.86)	(1.27)	(2.56)	(1.73)	67.7	0.00	4.00	4.00	0.10100
Control	A EO	00'6	10.00	11.00	11.75	2 JE	А 76	A 76	<i>к</i> л <i>к</i>	EER7 ED
	4.00	(3.07)	(3.23)	(3.37)	(3.48)	0.4.0	4.70	4.10	0.4.0	00.1000
SED	0.12	0.19	0.18	0.187	0.16	0.12	0.17	0.20	0.30	132.57
CD (0.05)	SN	0.42*	0.55**	0.41*	0.49**	NS	NS	NS	NS	288.85*

2.82

L.saksenae treated plots reached 3.0/ 25 hills fifteen days after second spray which was on par with 2.50/25 hills in thiamethoxam **(Table 2.6.10)**. Natural enemy population did not differ significantly among the treatments. The lowest yield was observed in the control plot with 5687 kg/ha, while all other were on par with a yield range of 6100 – 6518.75 kg/ha **(Table 2.6.10)**.

11. Ranchi

All treatments were significantly more effective than untreated control which recorded 11.35 ear head bugs per 25 hills. The number of ear head bugs were lowest in the chemical treatment plots (1.13/25 hills) and among the bioagents *M. anisopliae* recorded lowest population of 2.78 bugs/ 25 hills **(Table 2.6.11).**

Table 2.6.11 Effect of entomopathogens on sucking pests and their natural enemies at Ranchi	, EESP,
kharif 2023	

Treatment	Ear head bugs No./ 25 hills	% damage
Lecanicillium saksenae @ 1 x 107 cfu ml -1 KAU 7714 (20 g talc formulation/ L)	3.63 (2.02)	0.98
Beauveria bassiana @1 x 108 cfu ml-1 NBAIR Bb 5 (20 g talc formulation / L)	4.40 (2.21)	1.21
Metarhizium anisopliae @ 1 x 108 cfu ml -1 NBAIR Ma 4 (20 g talc formulation / L)	2.78 (1.81)	0.89
Thiamethoxam	1.13 (1.27)	0.43
Control	11.35 (3.44)	2.8
SED	0.09	
CD (0.05)	0.26	NS

Figures in parenthesis are square root transformed; PC- pre-count; DAS- days after spraying; *extrapolated

Evaluation of entomopathogens against sucking pests of rice was taken up in eleven locations to test the effectiveness of entomopathogens Lecanicillium saksenae, Beauveria bassiana and Metarhizium anisopliae. Treatments with biological control agents generally demonstrated comparable or better results in reducing pest populations while maintaining crop yield compared to the chemical pesticide and the control group. L. saksenae, B. bassiana, and M. anisopliae treatments exhibit promising efficacy in controlling pests such as ear head bugs and hoppers. Natural enemies (Mirid bugs, Spiders, Coccinellids) were more abundant in plots treated with biological control agents, suggesting a potential ecosystem-friendly approach to pest management. Overall, the data suggests that biological control agents could be viable alternatives or supplements to chemical pesticides for pest management.

2.7 INTEGRATED PEST MANAGEMENT STUDIES (IPMs)

The rice crop is severely impacted by biotic constraints such as weeds, diseases and insect pests during the crop growth period. Farmers are deeply concerned about managing these pests holistically. IPM is a well-established concept that is widely acknowledged by stakeholders. However, IPM implementation at the farmer level is limited because it is a knowledge-intensive approach that requires specialised skills to make decisions and select IPM solutions for the sustainable management of pests. To get over these obstacles, a participatory IPMs trial was conducted in collaboration with plant pathologists and agronomists to validate IPM practices from a range of choices and show farmers how to manage pests (such as insects, diseases, and weeds) holistically and economically.

IPMs trial was conducted Zone-wise in 18 locations during *Kharif* 2023 and two locations during *Rabi* 2022-23 in 41 farmers' fields. The details of pest management practices followed and pest incidence zone-wise are discussed below:

<u>Zone I – Hilly areas</u>

The IPMs trial was conducted at five farmers' fields at two locations (Khudwani and Malan) in this zone. Details of farmers, their village and district are given in table below:

S.No	Location	State	Village/District	Farmer Name
1	Khudwani	Jammu & Kashmir	Khudwani village, Kulgam district	Sri Shabir Ahmad Mir S/o Ab Qadir
2	Khudwani	Jammu & Kashmir	Hiller village, Anantnag district	Sri. Hiller Arhama/ Nazir Ahmad Teeli
3	Khudwani	Jammu & Kashmir	Hardu-Deharna village, Anantnag district	Sri. Gh Hassan Rather / Hardu- Deharna
4	Khudwani	Jammu & Kashmir	Brazloo village, Kulgam district	Sri. M Abbas Malik
5	Malan	Himachal Pradesh	Jia Haar village, Kangra district	Sri Santokh Singh

1) Khudwani, Jammu and Kashmir: The incidence of grasshoppers (Number/ 5hills) and damaged leaves were reported from both IPM and Farmer's practice (FP) plots in Shalimar Rice-4 and Shalimar Rice -3. Practices followed in IPM and FP plots are given below:

	IPM Practices	Farmer's Practices
Area	0.4 ha	0.4 ha
Variety	Shalimar Rice 4 & Shalimar Rice 3	Chena, local variety & Shalimar Rice 4
Nursery	 Seed treatment with Trichoderma @ 10g/ kg seed Application of 3 kg urea, 2 kg DAP and 1 kg MOP. 	 Application of 3 kg urea, 3 kg DAP
Main Field	 25-30 days old seedlings transplanted at a spacing of 20 X 15 cm with 2-3 seedlings/hill Applied 4 kg urea, 6.6 kg DAP, 2.5 kg MOP and 0.75 kg Zinc Sulphate per kanal. Applied 1.5 kg a.i. of Butachlor 5G (Machete) per hectare, 3-5 days after transplanting (or) 0.5 kg Eros (Pyrazosulfuron + Pretilachlor) at 3-5 days after transplanting. One-hand weeding Foliar application of Tricyclazole @ 60g/ 100 litre water 	 40-45 days old seedlings transplanted at random with 5 seedlings/hill Applied only DAP and Urea. Applied 1.5 kg a.i. of Butachlor 5G (Machete) per hectare, 3-5 days after transplanting (or) 0.5 kg Eros (Pyrazosulfuron + Pretilachlor) at 3-5 days after transplanting. One-hand weeding

Practices followed in IPMs trial at Khudwani, Kharif 2023

Grasshopper damage was significantly low in IPM plots at Sri Ahmad Mir's field (9.2%) and Sri Gh Hassan Rather's field (6.9%) as compared to FP plots at both locations (**Table 2.7.1**). Grasshopper numbers were the same in both IPM and FP plots except at Sri Nadeem Ahmad Malik's FP plot (14.2/5 hills) at 84 DAT. Grain yield was significantly higher in IPM plots (7625 – 8875 kg/ha) as compared to FP plots (5375 – 6875 kg/ ha). This high grain yield resulted in higher gross returns and a higher BC ratio in the IPM plots (1.91-2.15) as against FP plots (1.35-1.64).

		% GHDL		GH N	GH No/5 hills		Gross	Cost of	Net	
Farmer Name	Treatm ents	30 DAT	84 DAT	30 DAT	84 DAT	(kg/ ha)	Returns (Rs.)	Cultiva tion (Rs.)	Retur ns (Rs.)	BC Ratio
Sri. Shabir Ahmad Mir	IPM	9.2±0.9b	13.9±0.5b	1.4± 0.4	5.4±0.5	7625	152500	79800	72700	1.91
Sri M Shafi Bhat	FP	21.6±2.5a	23.5±0.9a	2.4±0.2	5.2 ± 0.4	5375	107500	79650	27850	1.35
Sri Nazir Ahmad Teeli	IPM	9.3 ±1.3a	11.2±0.7a	2.4±0.2	5.2±0.5	8125	162500	84625	77875	1.92
Sri M Yaqoob Teeli	FP	9.3 ±1.3a	11.2±0.7a	3.6±0.7	9.4± 0.5	6550	131000	82825	48175	1.58
Sri Gh Hassan Rather	IPM	6.9 ±0.7b	18.4 ± 0.5b	2.4±0.2	5.2 ±0.6	8125	162500	77875	84625	2.09
Sri Gh Nabi Bhat	FP	11.8 ±1.2a	23.3 ± 0.4a	2.6±0.2	4.6 ± 0.5	6050	121000	84675	36325	1.43
Sri M Abbas Malik	IPM	6.9 ± 0.8a	19.6 ± 0.4b	2.6±0.2	4.2 ± 0.6	8875	177500	82475	95025	2.15
Sri Nadeem Ahmad Malik	FP	6.9 ± 0.6a	22.3 ± 0.6a	3.6±0.4	14.2±1.2	6875	137500	83825	53675	1.64
	IPM					8188				2.02
	FP					6213				1.50

Table 2.7.1 Pest incidence, grain yield and BC ratio in IPMs trial at Khudwani, Kharif 2023

Price of Paddy = Rs. 2000/q ; GHDL = Grasshopper damaged leaves

2) Malan, Himachal Pradesh: The IPMs trial was conducted in Jia Haar village, Kangra district, Himachal Pradesh. Kasturi Basmati was grown in the IPM field and a local variety, Jheni was grown in the FP plot. The practices followed in IPM and FP plots are given below:

	IPM Practices	Farmers Practices
Area	10 ha	10 ha
Variety	Kasturi Basmati	Jheni, a local variety
Nursery	Line sowing Applied FYM	Broadcast nurseryApplied urea @ 30 kg
Main field	 Applied 90 kg N, 40 kg P₂O₅ and 40 kg K₂O. Application of herbicide – Bispyribac sodium salt Sprayed Chlorpyriphos Applied Bavistin 	 Applied 30 kg urea Manual weeding

Practices followed in IPMs trial at Malan, *Kharif* 2023

The incidence of black beetle, leaf folder and BPH was observed in both IPM and FP plots (**Table2.7.2**). Dead hearts caused by black beetle were significantly high in FP plots (32.7 – 36.4% DH) compared to IPM plots (20.0-20.6% DH) at both 29 and 36 DAT. However, leaf folder damage was significantly higher in IPM plot (21.6% LFDL) than that in the FP plot (12.9% LFDL). BPH incidence was low in both treatments. Grain yield was high in IPM plots (3600 kg/ ha) resulting in high gross returns and BC ratio (3.10). In this Zone, the weed population at Active Tillering and Panicle Initiation stage in IPM plots was lower than that in farmers practice by 4.65 and 16.27% respectively. The dry weed biomass was lower in IPM implemented fields by 59.82 and 19.28 % respectively (**Table 2.7.3**). The mean grain yield advantage was 49.07 in IPM adopted plots.

Treatm ents	% DH due to black beetle		% L	FDL	BPH (No./5 hills)	Yield (kg/ ha)	Gross Returns	Cost of Cultivation	Net Returns	BC Ratio
	29 DAT	36 DAT	43 DAT	57 DAT	43 DAT		(13.)	(13.)	(13.)	
IPM	20.0 ±	20.6 ±	18.7 ±	21.6 ±	5.8 ±	3600 ±	144000	46410	97590	3 10
	3.7b	4.3b	1.9a	2.5a	0.9b	112a		10110	01000	0.10
ED	32.7 ±	36.4 ±	19.4 ±	12.9	7.0 ±	1800 ±	72000	35300	36700	2.04
ГГ	2.9a	2.9a	2.2a	1.2b	1.1a	33b	72000	33300	30700	2.04

Table2.7.2 Pest incidence, grain yield and BC ratio in IPMs trial at Malan, Kharif 2023

Price of Paddy = Rs. 4000/q

Table 2.7.3 Weed parameters at Malan, Kharif 2023

Treatments	Weed p no	Weed dry biomass g/m²			
	30 DAT	60 DAT	30 DAT	60 DAT	
IPM	41.0(6.4)	36.0(6.0)	30.5	55.5	
FP	43.0(6.5)	43.0(6.6)	75.8	68.8	
Mean	6.5	6.3	53.2	62.2	
CD (0.05)	2.7	0.1	55.0	20.0	

Zone II – Northern areas

The IPMs trial was conducted in 6 farmers' fields in three locations. Location-wise details of farmers, their village and district are given below:

S. No	Location	State	Village, District	Farmer Name
1	Kaul	Haryana	Karsa Dod village, Kaithal district	Sri. Dalsher Singh
2	Kaul	Haryana	Kaul village/ Kaithal district	Sri Pardeep
3	Ludhiana	Punjab	Sudhar village/ Ludhiana district	Sri S Inderjeet Singh
5	Pantnagar	Uttarakhand	Chitranjanpur, Dineshpur, Udham Singh Nagar	Sri Amit Sarkar
6	Pantnagar	Uttarakhand	Chitranjanpur, Dineshpur, Udham Singh Nagar	Sri Prabhash Sarkar
7	Pantnagar	Uttarakhand	Arjunpur, Dineshpur, Udham Singh Nagar	Sri Prakash Sarkar

The IPM practices and farmer practices followed are given in the table below:

O.4 ha O.8 30 Seed treatment with Bavistin 10 g + Streptocycline 1g / 10 kg seed for 12 h Application of 1 kg DAP and 2 kg urea Application of 150 kg urea as top dressing Application of Pretilachlor @ 1250 – 1500 ml/ ha Application of cartap hydrochloride @ 10 kg/ acre Sprayed Flubendamide @ 70gm/acre + Lamda cyhalothrin @30ml/acre Two sprays of a mixture of insecticides Spray of a mixture of insecticide and fungicide Applied Streptocycline @ 15g/ba + Copper
0.4 ha CSR 30 Seed treatment with Bavistin 10 g + Streptocycline 1g / 10 kg seed for 12 h Application of 1 kg DAP and 2 kg urea Application of 150 kg urea as top dressing Application of Pretilachlor @ 1250 – 1500 ml/ ha Application of cartap hydrochloride @ 10 kg/ acre Sprayed Flubendamide @ 70gm/acre + Lamda cyhalothrin @30ml/acre Two sprays of a mixture of insecticides Spray of a mixture of insecticide and fungicide Applied Streptocycline @ 15g/ba + Copper
CSR 30 Seed treatment with Bavistin 10 g + Streptocycline 1g / 10 kg seed for 12 h Application of 1 kg DAP and 2 kg urea Application of 150 kg urea as top dressing Application of Pretilachlor @ 1250 – 1500 ml/ ha Application of cartap hydrochloride @ 10 kg/ acre Sprayed Flubendamide @ 70gm/acre + Lamda cyhalothrin @30ml/acre Two sprays of a mixture of insecticides Spray of a mixture of insecticide and fungicide Applied Streptocycline @ 15g/ba + Copper
 Seed treatment with Bavistin 10 g + Streptocycline 1g / 10 kg seed for 12 h Application of 1 kg DAP and 2 kg urea Application of 150 kg urea as top dressing Application of Pretilachlor @ 1250 – 1500 ml/ ha Application of cartap hydrochloride @ 10 kg/ acre Sprayed Flubendamide @ 70gm/acre + Lamda cyhalothrin @30ml/acre Two sprays of a mixture of insecticides Spray of a mixture of insecticide and fungicide Applied Streptocycline @ 15g/ba + Copper
 Application of 150 kg urea as top dressing Application of Pretilachlor @ 1250 – 1500 ml/ ha Application of cartap hydrochloride @ 10 kg/ acre Sprayed Flubendamide @ 70gm/acre + Lamda cyhalothrin @30ml/acre Two sprays of a mixture of insecticides Spray of a mixture of insecticide and fungicide Applied Strentocycling @ 15g/ba + Copper
oxychloride @ 500g/ha, Propiconazole 25 EC @ 1000ml/ha
Halfacre
PR 126
Application of urea @ 1.0 kg/ acre nursery and Zinc sulphate @ 1 kg/ acre nursery
Applied neem coated urea @ 120 kg and zinc sulphate 25 kg/ acre Application of Butachlor @ 1.2 L/ acre Application of Mortar @ 170 g/ acre Sprayed Chess @ 140g/ acre Sprayed Tilt + Nativo (tebuconazole and trifloxystrobin) @ 200 + 80 ml/ acre
, , ,

Practices followed in IPMs trial in Zone II (Northern areas), *Kharif* 2023 Practices followed in IPMs trial at Kaul, *Kharif* 2023

1) Sri Amit S	Sarkar, Chitranjanpur, Dineshpur village, Udhamsing	h nagar district, Uttarakhand
Area	4000 sq.m	4000 sq.m
Variety	PR 126	PR 126
Main Field	• Application of NPK @ 40 kg/, Zinc @ 10 kg,	• Application of NPK @ 40 kg, Chelated Zinc @ 2.5
	urea @ 48 kg	kg and urea 60 kg
	• Seed treatment with Trichoderma @ 10g/ kg	• Application of Pretilachlor 50 EC @ 1.5 liter/ ha;
	seed	Nominee gold @ 200 ml/ ha
	Application of Bispyribac Sodium @250 ml/ha	• Applied Cartap Hydrocloride 4.0 GR @ 19kg/ha,
	• Sprayed Cartap hydrocloride 50% SP@	Chlorantrniliprole 18.5%(Coragen) @ 150 ml/ha.
	600g/ha	• Applied Chlorpyrifos 50% + Cypermethrin 5% EC
	 Sprayed Neemazal 	(Hamla)
	 Sprayed Pymetrozine 50% WG 	Buprofezin 25 SP @1000 ml /ha, Pymetrozine 50%
	• Applied Hexaconazole 5% EC + Propiconazole	WP
	25% EC	Applied Copper oxychloride 50% WP +
	 Installed pheromone traps for YSB @ 8/ ha 	Streptocycline
		Applied Propiconazole 25% EC(Tilt) @ 500 ml/ha
5) Sri Prab	hash Sarkar, Chitranjanpur, Dineshpur village, Udha	msingh nagar district, Uttarakhand
Area	4000 sq.m	4000 sq.m
Variety	PR 130	PR 130
Main Field	Application of NPK 40 kg, Zinc 10 kg and Urea	Application of NPK 40 kg, Chelated Zinc @ 2.5 kg
	48 kg	and Urea 60 kg, micronutrient granules @ 2 kg/
	• Application of Bispyribac Sodium 10% SC@	
	250 mi/na	• Applied Pretliachior @1.5 liter/ha, Nominee gold
	• Sprayed Cartap hydrochloride 50% SP @	200 mi/na
	SC/Develop) @ 04 ml /core	Application of Chlorantraniliprole 0.4GR (Ferteria)
	Applied Heyzoonzolo 5%EC + Propisonazolo	Applied Chlorantraniliprole 10.5% SC (Colagen) Applied Einropit 5% SC and Triflumozonyrim 10%
	25% EC	SC(Pexalon) @ 94 ml /acre
	 Installed pheromone traps for YSB @ 8/ ha 	Applied Streptocycline @ 15g/ba + Copper
	Spraved Neemazal	oxycloride @ 500g/ha. Propiconazole 25 EC @
	-1 -7	500ml/ha
6) Sri Praka	ash Sarkar, Arjunpur, Dineshpur village, Udhamsing	h nagar district, Uttarakhand
Area	4000 sq.m	4000 sq.m
Variety	PR 130	PR 130
Main Field	Application of NPK 40 kg, Zinc 10 kg and Urea	• Application of NPK 40 kg, Chelated Zinc @ 2.5 kg
	48 kg	and Urea 60 kg,, micronutrient granules @ 2 kg/
	• Application of Bispyribac Sodium 10% SC@	acre
	250 ml/ha	• Applied Pretilachlor @ 1.5 L/ ha, Nominee gold 200
	• Applied Cartap Hydrocloride 50% SP @ 600	ml/ ha
	g/ha, Pymetrozine 50% WG	Application of Chlorantraniliprole 0.4GR (Ferterra)
	Applied Hexaconazole 5% EC + Propiconazole	Applied Chlorantraniliprole 18.5% SC (Coragen)
	25% EC	Applied Fipronil 5% SC and Pymetrozine 50% WP
	Installed pheromone traps for YSB @ 8/ ha	Applied Streptocycline @ 15g/ha + Copper
	Sprayed Neemazal	oxycloride @ 500g/ha, Hexaconazole 5% EC

Incidence of stem borer, leaf folder, BPH, WBPH, leaf blast, sheath blight, brown spot was observed in both IPM and FP plots (**Table 2.7.4**). In general, the incidence of insect pests was low in both treatments. However, across the locations, the incidence of dead hearts, leaf folder, BPH and WBPH was significantly low in IPM plots as compared to FP plots (**Figure 2.7.1**). Across the farmers, grain yield was significantly higher in the IPM plot (5755 kg/ ha) as compared to the FP plot (5378 kg/ ha).

Treatments		%	% LFDL	BPH(No./	WBPH(No./	Yield	
			DH/WE		hill)	hill)	kg/ha
	F1-Sri.	IPM	1.7(1.4)b	4.2(2.2)b	2(1.5)b	0.4(1.1)a	4461(67)a
KUL	KUL Dalsher Singh F		2.6(1.7)a	20.7(4.5)a	4(2.1)a	0.6(1.2)a	4099(64)b
LSD)(0.05,36 df)		0.22	0.13	0.30	0.19	2.57
	F2 - Sri	IPM	1.2(1.2)b	3.4(1.9)b	1(1.1)a	0.2(1.0)a	4433(66)a
KUL	Pardeep	FP	3.1(1.8)a	24.4(4.9)a	2(1.4)a	0.4(1.1)a	4154(65)b
LSD	0(0.05,36 df)		0.21	0.13	0.37	0.10	1.62
	F3 - Sri	IPM	3.5(2.0)b	5.4(2.3)a	10(3.2)b	11(3.3)b	7284(85)a
LDN	Inderjeet Singh	FP	4.5(2.2)a	5.6(2.3)a	13(3.6)a	14(4.0)a	6992(84)b
LSD)(0.05,36 df)		0.22	0.08	0.27	0.27	1.04
	F4 = Sri	IPM	5.3(2.4)b	0.3(0.9)b	14(3.4)b	0.(0.7)a	6277(79)a
PNT	Amit Sarkar	FP	7.4(2.7)a	0.7(1.0)a	25(4.8)a	0.(0.7)a	5794(76)b
LSD	LSD(0.05,36 df)		0.26	0.09	0.31	0.02	2.48
	F5 = Sri	IPM	4.9(2.2)b	0.8(1.1)a	14(3.6)b	2(1.5)b	5924(77)a
PNT	Prabhash Sarkar	FP	9.0(3.0)a	0.6(1.0)a	31(5.5)a	4(2.0)a	5534(74)a
LSD	0(0.05,36 df)		0.22	0.11	0.34	0.27	3.12
	F6 = Sri	IPM	4.9(2.2)b	0.3(0.9)a	24(4.7)a	1(1.4)a	6148(79)a
PNT	Prakash Sarkar	FP	8.6(3.0)a	0.3(0.9)a	22(4.4)a	2(1.5)a	5694(75)a
LSE	0(0.05,36 df)		0.26	0.07	0.38	0.16	4.06
Ti	reatments						
-	T1 = IPM		3.6(1.9)b	2.6(2.1)b	11(2.9)b	3(1.5)b	5755(76)a
	T2 = FP		5.8(2.4)a	6.4(2.6)a	16(3.6)a	4(1.7)a	5378(73)b
LSD	(0.05,216 df)		0.09	0.07	0.13	0.08	0.81
	DAT						
D1	1 = 50 DAT		6.0(2.4)a	4.3(2.7)a	9(2.8)c	2(1.5)b	
D2	2 = 64 DAT		5.3(2.3)a	5.0(2.7)a	24(4.4)a	6(2.1)a	
D3	3 = 71 DAT		4.3(2.1)b	4.6(2.3)b	14(3.4)b	3(1.6)b	
D4	1 = 85 DAT		3.8(2.0)b	5.5(2.3)b	7(2.5)d	1(1.4)c	
	D5 = PH		4.2(2.1)b	3.0(1.8)c			
LSD	(0.05, 216 df)		0.15	0.11	0.18	0.11	

Table 2.7.4 Insect Pest incidence in IPMs trial in Zone II (Northern), Kharif 202

Figures in parenthesis are Atkinson's transformed values. Means in a column followed by same letter are not significantly different from each other

Figure 2.7.1 Box plots of the incidence of dead hearts, leaf folder damage, BPH, WBPH, brown spot, leaf blast, sheath blight and grain yield in IPM and FP plots across locations in Zone II (Northern areas)

At Kaul, the weed population at Active Tillering and Panicle Initiation stage in IPM plots was lower than farmers practice by 40 and 70% respectively. The mean grain yield advantage was 7.2 in IPM adopted plots. At Ludhiana, the weed population at Panicle Initiation stage in IPM plots was lower than farmers practice by 19.2% respectively. The mean grain yield advantage was 1.5 in IPM adopted plots (**Table 2.7.5**).

		Weed population (No/m2)					
Location	Ireatments	Active tillering stage	Panicle initiation stage				
KAUL	IPM	1.0(1.0)	0.4(0.9)				
	FP	0.6(1.0)	0.1(0.8)				
	Exp. mean	1.0	0.8				
	CD(0.05)	0.8	0.3				
LUDHIANA	IPM		5.3(2.3)				
	FP		6.5(2.5)				
	Exp. mean		2.4				
	CD(0.05)		0.6				

 Table 2.7.5 Weed parameters in Zone II, Kharif 2023

At Pantnagar, the trial was evaluated for the management of sheath blight, brown spot, bacterial blight and false smut in three different locations. Data was recorded as disease severity for the all the diseases except false smut, wherein the data was recorded as disease incidence. Spraying of specific fungicide (Hexaconazole 5% EC) for sheath blight disease effectively reduced the disease progression of (377-317 AUDPC units) when compared to Farmers practices (730 to 670 AUDPC units). Spraying of Propiconazole 25% EC at correct stage of the crop effectively reduced the false smut disease incidence (IPM - 22.6 to 13.6 %) as against farmers practice (20.2% to 22.6%). Similarly, adoption of IPM practices reduced the disease progress of brown spot and bacterial blight, as compared to the farmer practices. At Kaul, the trial was conducted for the management of leaf blast, neck blast, bacterial blight and sheath blight in two different locations. Adoption of IPM practices, significantly reduced the progress of the leaf blast (L1= IPM-116; FP-189, L2= IPM-117; FP-159) and sheath blight (L1= IPM-85; FP-104, L2= IPM-58; FP-105) in terms of AUDPC value as compared to the farmer management practices. In case of neck blast disease there was no much variation between the IPM and Farmer practices. At Ludhiana, the trial was conducted for the management of sheath blight, brown spot and false smut at one location. Results revealed that, adoption of IPM practices reduced the false smut disease incidence (Table 2.7.6).

Among the IPM farmers, the highest grain yield was reported from the IPM plot (7284 kg/ ha) and was significantly different from the FP plot (6992 kg/ha). Maximum gross returns were obtained at Kaul in Sri Dasher Singh's IPM plot resulting in the highest BC ratio (6.01) followed by the FP plot (5.59). In Zone II, the mean BC ratio was higher in the IPM plot (3.68) as compared to the FP plot (**Table 2.7.7**).

		DI (%)		AUDPC Values							DI (%)	
	Treat-		Pantn	agar		Kaul				Ludhiana		
	ment	FS	SHB	BS	BB	LB	NB	BB	SHB	SHB	BS	FS
11	IPM	15.9	354	28	0	116	20	12	85	114	152	18.2
	FP	22.6	728	90	16	189	20	21	104	60	72	20.0
12	IPM	13.7	377	28	0	117	10	15	58	-	-	
	FP	20.2	730	91	15	159	15	22	105	-	-	
1.2	IPM	13.6	317	29	0	-	-	-	-	-	-	
	FP	21.4	670	94	16	-	-	-	-	-	-	

Table2.7.6 AUDPC values based on disease severity (%) of rice diseases in Zone II (Pantnagar, Ludhiana and Kaul), *Kharif* 2023

L- Location; IPM – Integrated Pest Management Practices; FP- Farmer Practices; LB- Leaf Blast; NB- Neck Blast; BB- Bacterial Blight; BS – Brown spot; SHB- Sheath Blight; DI- Disease Incidence; AUDPC- Area under disease progress curve

Location	Farmers	Treatments	Yield (q/ ha)	Gross returns (Rs.)	Cost of cultivation (Rs.)	Net returns (Rs.)	BC ratio
KUL	E1- Sri Dalsher Singh	IPM	44.61	274352	45625	228727	6.01
		FP	40.99	252089	45125	206964	5.59
KUL	F2 - Sri Pardeep	IPM	44.33	265980	53813	212167	4.94
		FP	41.54	249240	50150	199090	4.97
LDN	F3 - Sri Inderjeet Singh	IPM	72.84	150050	56746	93304	2.64
		FP	69.92	144035	60646	83389	2.38
PNT	F4 = Sri Amit Sarkar	IPM	62.77	131817	44468	87349	2.96
		FP	57.94	121674	53140	68534	2.29
PNT	F5 = Sri Prabhash Sarkar	IPM	59.24	124404	47298	77106	2.63
		FP	55.34	116214	55008	61206	2.11
PNT	F6 - Sri Drakash Sarkar	IPM	61.48	129108	44618	84490	2.89
		FP	56.94	119574	52870	66704	2.26
	IPM		57.55				3.68
	FP	53.78				3.27	

Table 2.7.7 Returns and BC ratio in IPMs trial in Zone II (Northern), *Kharif* 2023

Price of Paddy: F1 = Rs.6150/q; F2 = Rs. 6000/q; F3 = Rs. 2060/q; F4, F5 & F6 = Rs.2100/q

Zone III – Eastern areas

IPM trial was conducted in three farmers' fields at three locations. The details are given below:

S. No	State	Location	Village/district	Farmer Name
1	Odisha	Chiplima	Garmunda village, Sambalpur	Sri. Tarakanta Pradhan
2	Uttar Pradesh	Masodha	Murchpur village, Masodha/ Ayodhya district	Sri Raj Narayan
3	Bihar	Pusa	Muktapur village, Samastipur district	Sri Shankar Prasad

The package of practices followed in both IPM and FP plots are given below: Practices followed in IPMs trial in Zone III (Eastern areas), *Kharif* 2023

Practices for	ollowed in IPMs trial at Chiplima, <i>Kharif</i> 2023			
	IPM practices	Farmers practices		
Area/ variety	2000 sq.m;Swarna (MTU 7029)	2000 sq.m;Swarna (MTU 7029)		
Nursery	 Seed treatment with Trichoderma @ 10g/kg Applied fipronil 0.3 G @ 10 kg/ acre, 5 days before transplantation 			
Main field	 Transplanted at a spacing of 20 x 15 cm. Alleyways of 30 cm after every 2 m. Fertilizers (NPK) applied @ 100:50:50. Sprayed CM75 @ 1000 g/ ha at 60 DAT for brown spot management Applied Triflumezopyrim 10% SC @ 94 ml/ acre at 70 DAT 	 Fertilizers (NPK) applied 100:50:50 Applied Cartap hydrochloride 4 G @ 20 kg /ha during transplanting Sprayed Fipronil 5 SC @ 1250 ml/ ha two times at 30 DAT and 45 DAT Sprayed Isoprothiolane 40 EC @ 1000 ml/ha at 55 DAT Sprayed Pymetrozine 50 WP @ 300 g /ha at 75 DAT 		
Flacilites				
Area/	5 acres	5 acres		
Variety	BPT 5204	BPT 5204		
Nursery	Seed treatment with Trichoderma@10kg/ha. Presoak the seed in water for 12 hrs. Application of FYM	Only presoak the seed in water for 12 hrs.		
Main field	 Application of 100:50:50:10: N: P: K: ZnSo4 and 10 t/ha FYM Transplanted seedlings at a spacing of 20 x 15 cm. Alleyways of 30 cm after every 2 m Applied Pretilachlor 0.5 kg ai/ ha within two days after transplanting the crop. Installed pheromone traps with 5 mg lure @ 8 traps/ ha for stem borer monitoring. One spray of Cartap hydrochloride 50 WP @ 400 g / ha at 60 DAT Need based application of Propiconazole 	 Applied 50:50 N: P and 5 t/ha FYM Applied Nominee gold @ 100 ml/ acre 		
Area	1 acre Rejendra Mahauri	1 acre		
Nursery	Seed treatment with Carbendazim @ 2 g/ kg seed	Seed treatment with Carbendazim @ 2 g/ kg seed		
Main Field	 Transplanting at 20 x 15 cm spacing Application of RDF Application of Butachlor @ 1.5 kg ai/ ha after one week after transplanting Installed pheromone traps for YSB @ 3/ acre Application of Bispyribac sodium 20 g ai/ ha at 20 DAT Application of cartap hydrochloride 50 WP @ 600g / ha at 50 DAT 	 Transplanting at 20 x 15 cm spacing Application of RDF Application of Butachlor @ 1.5 kg ai/ ha after one week after transplanting Hand weeding at 30 DAT Application of Padan (cartap hydrochloride) soluble powder @ 2 kg formulation/ha 		
Low incidence of stem borer, leaf folder and BPH was observed in both IPM and FP plots at all the locations (**Table 2.7.8**). However, the incidence was significantly low in IPM plots as compared to FP plots across locations (**Figure 2.7.2**).

	Treatments			%LFDL	%BPH	Yield kg/ha
Location	Farmer					
	F1 = Sri	IPM	0.8(1.0) ^b	0.1(0.8)b	8.0(3)b	4410(66)a
СНР	Tarakanta Pradhan	FP	1.4(1.1)a	0.4(1.0)a	22.0(5)a	4200(65)a
L	_SD (0.05; 28df)		0.11	0.05	0.37	3.79
MSD	F2 = Sri Raj	IPM	3.4(2.0)b	4.0(2.0)b		5444(74)a
WIGD	Narayn	FP	4.7(2.3)a	6.9(2.6)a		3610(60)a
L	_SD (0.05; 28df)		0.19	0.10		1.67
PUS	F3 = Sri Shankar	IPM	7.0(2.4)a	1.4(1.1)b		5918(77)a
	Prasad	FP	7.5(2.6)a	2.3(1.3)a		4686(68)b
L	LSD (0.05; 28df)			0.04		5.99
	Treatments					
	IPM		1.8(5.7)b	2.9(13.8)b	2.0(5)b	5257(72)a
	FP		2.4(6.4)a	5.7(16.9)a	6.0(8)a	4162(64)b
	LSD (0.05,84)		0.36	0.36	0.65	1.91
	DAT					
D1 = 29/45 DAT			1.9(5.9)b	10.5(25.2)a		
D2 = 50/60 DAT			1.5(5.5)b	3.9(14.3)b	2.0(5)c	
D3 = 71/75 DAT			2.0(6.0)b	2.4(12.4)c	4.0(6)bc	
	D4 = Pre har		2.8(7.0)a	0.5(9.4)d	4.0(7)b	
	LSD (0.05,84)	0.51	0.51	0.92		

Table 2.7.8 Insect Pest incidence in IPMs trial in Zone III (Eastern), Kharif 2023

Figures in parenthesis are Atkinson's transformed values. Means in a column followed by same letter are not significantly different from each other

Figure 2.7.2 Box plots of the incidence of dead hearts, leaf folder damage, BPH and grain yield in IPM and FP plots across locations in Zone III (Eastern areas)

In the IPM trial conducted by Chiplima, the data on weed population recorded at Panicle Initiation stage showed significant decrease in weed population by 25.2%. IPM implemented fields, resulted in higher growth, yield attributes and grain yield advantage increase by 22% of the variety Swarna (**Table 2.7.9**). At Masodha, Faizabad, the data on weed population recorded at Active Tillering and Panicle Initiation stage showed significant decrease in weed population by 77.2 and 37.8%, respectively. The dry weed biomass was lower in IPM implemented fields by 77.2 and 35.2 % respectively. IPM implemented fields, resulted in higher growth, yield attributes and grain yield advantage increase by 33.7%. In the IPM field trial conducted, the weed population at Active Tillering and Panicle Initiation stage was lower than farmers practice by 17.1 and 9.7 % respectively. The dry weed biomass also was lower in IPM implemented fields by 18.2 and 13.3% respectively. The mean grain yield advantage was 20.8% in IPM adopted plots.

		Weed popula	ation (No/m2)	Weed dry biomass (g/m2)			
Locations	Treatments	Active tillering stage	Panicle initiation stage	Active tillering stage	Panicle initiation stage		
CHIPLIMA	IPM		106.8(10.3)				
	FP		142.8(11.9)				
	Exp. mean		11.2				
	CD(0.05)		0.3				
MASODHA	IPM	3.0(1.9)	6.2(2.6)	0.4	0.9		
	FP	13.0(3.7)	9.9(3.2)	1.9	1.4		
	Exp. mean	2.8	2.9	1.2	1.2		
	CD(0.05)	0.3	0.3	0.3	0.3		
PUSA	IPM	11.2(3.4)	12.7(3.6)	13.0	14.9		
	FP	13.6(3.8)	14.1(3.8)	15.8	17.2		
	Exp. mean	3.6	3.7	14.4	16.0		
	CD(0.05)	0.4	0.2	2.0	1.0		

Table 2.7.9 Weed parameters in Zone III (eastern areas), Kharif 2023

At Chiplima, adoption of IPM Practices like seed treatment with Trichoderma @10g/kg and spraying of carbendazim + mancozeb reduced the leaf blast disease progress (IPM- 27; FP- 141) as compared to farmer practices. The diseases viz., neck blast and bacterial blight progress was low in the IPM practices adopted field as compared with the farmer practices adopted field (NB = IPM - 177; FP-225, BB = IPM-295, FP-350). Similarly, reduction of false smut incidence (8.0%) was recorded in the IPM practices adopted field as against farmer practices (11.76%). In case of brown spot disease, IPM practice adopted field recorded the AUDPC value of 132 as against 108 in farmer practice adopted field. At Masodha the trial was conducted for the management of leaf blast, neck blast and bacterial blight and the data was recorded in terms of disease severity. Significant reduction in the disease development of leaf blast, neck blast and bacterial blight was recorded. Adoption of IPM practices, completely reduced the disease severity of leaf blast (0) as compared to farmer practices (26%). With respect to neck blast and bacterial blight, the disease severity was reduced from 37.3% to 16.4% and from 36.6% to 11.1% respectively (**Table 2.7.10**).

	Chiplima							Masodha			
	Treatment AUDPC				FS	Disease Severity (%)					
		LB	NB	BS	BB	(DI %)	LB	NB	BB		
L1	IPM	27	177	132	295	8.0	0	16.4	11.1		
	FP	141	225	108	350	11.8	26.0	37.3	36.6		

Table 2.7.10 AUDPC values based on disease severity (%) of rice diseases at Chiplima and Masodha, *Kharif* 2023

L- Location; IPM – Integrated Pest Management Practices; FP- Farmer Practices; LB- Leaf Blast; NB- Neck Blast; BB- Bacterial blight; DI- Disease Incidence; AUPDC- Area under disease progress curve

Grain yield was significantly high in IPM plots (5257 kg/ ha) as compared to FP plots (4165 kg/ ha). BC ratio was high in IPM plots (2.10) due to high grain yield resulting in high gross returns and low cost of cultivation compared to FP plots (**Table 2.7.11**).

Table 2.7.11Returns and BC ratio in IPMs trial in Zone III (Eastern), *Kharif* 2022

			Yield	Gross	Cost of	Net	
Location	Farmer's Name	Treatments	(q/ha)	Returns (Rs.)	Cultivation (Rs)	Returns (Rs.)	BC Ratio
CHP	F1 = Sri Tarakanta	IPM	44.10	85554	50540	35014	1.69
	Pradhan	FP	42.00	81480	52940	28540	1.54
MCD	F2 = Sri Raj Narayn	IPM	54.44	117863	62860	55003	1.88
IVISD		FP	36.10	78157	60400	17757	1.29
DUIS	F3 = Sri Shankar	IPM	59.18	129190	47283	81907	2.73
FU3	Prasad	FP	46.86	102295	36865	65430	2.77
		IPM	52.57				2.10
		FP	41.65				1.87

Price of paddy at CHP = Rs.1940/q, at MSD= 2165 Rs/ q; at PSA = Rs. 2183/q

Zone IV – North-Eastern areas

Titabar, Assam: In Zone IV, the IPMs trial was conducted at Sri Purna Kanta Baruah's field, Dihingia village, Titabar Mandal, Jorhat district, Assam. Ranjit sub-1 variety was grown in both IPM and FP plots. Practices followed in IPM and farmers' practices are given in the table below:

Practices	followed i	n IPMs	trial at	Titabar in	Zone	IV (North	Esatern)	Kharif 2023
riactices	IOIIOWEU I		li ai ai	inavai in	LOUE		Loatenny,	

	IPM Practices	Farmers Practices
Variety	Ranjit Sub-1	Ranjit Sub-1
Nursery	 Seed treatment with Bavistin @ 2 g/ kg seed 	
Main field	 Fertilizer application @ 20, 10, 10 kg NPK/ha Applied Pretilachlor within a week of transplanting Applied paddy weeder to lessen weeds Installed pheromone traps @ 12/ ha for stem borer Applied Chlorantraniliprole 18.5% SC for stem borer management Placed tricho cards for stem borer and leaf folder management Sprayed fresh cowdung solution @200g/L water at mid tillering stage against BLB 	 Fertilizer application @ 60,20,40 kg NPK/ha Manual weeding done two times

The incidence of dead hearts caused by stem borer was significantly high in the FP plot (15.3% DH) compared to the IPM plot (5.0% DH) at 22 DAT and a similar trend was observed at 36 DAT (**Table 2.7.12**). The incidence of white ears was significantly lower in the IPM plot (3.5% WE) than in the FP plot (8.9% WE).

Similarly, gall midge incidence (3.2% SS) and leaf folder incidence (5.5% LFDL) were low in IPM plots as against the FP plot.

Treatments	%	DH	% WE	% SS	%LFDL	% WMDL
	22 DAT	36 DAT	Pre har	36 DAT	36 DAT	43 DAT
IPM	5.0 ± 2.1b	7.1 ± 2.3b	3.5 ± 0.9b	3.2 ± 1.3b	5.5 ± 1.7b	2.7 ± 1.1a
FP	15.3 ± 6.3a	10.8 ± 1.1a	8.9 ± 0.9a	8.2 ± 0.9a	9.1 ± 1.1a	3.7 ± 0.6a

Table 2.7.12 Insect pest incidence in IPMs trial at Titabar in Zone IV (North Eastern), Kharif 2023

Figures in parenthesis are Atkinson's transformed values. Means in a column followed by same letter are not significantly different from each other

Weed population and biomass were reported for Panicle Initiation stage only. A Significant reduction in weed population (49.5%) and dry weed biomass (45.1%) in IPM fields was recorded. The grain yield advantage of 20.6 % was recorded in IPM adopted fields. Grain yield was significantly high in the IPM plot (4990 kg/ha) resulting in higher gross returns and a high BC ratio (2.44) compared to FP plot (**Table 2.7.13**).

Table 2.7.13 Weed parameters, Grain yield and BC ratio in IPMs trial at Titabar, *Kharif* 2023

Treatments	Weed population (No/m2)	Weed dry biomass (g/m2)	Yield (Kg/ha)	Gross Returns (Rs.)	Gross Cost of Returns cultivation (Rs.) (Rs.)		BC ratio
IPM	33.8(5.8)	17.3	4990 ± 4a	104790	43000	61790	2.44
FP	67.0(8.1)	31.5	3420 ± 51b	71820	37000	34820	1.94

Price of Paddy = Rs.2100/q

Zone V – Central areas

Jagdalpur, Chattisgarh: IPMs trial was conducted in three farmer's fields in this zone at only one location. It is conducted in Sri Bhola Ram Sethiya's field, Sri Lakshminath's field and Sri Damodar's field in Tandpal village, Bastar district. Practices followed in both IPM and FP plots are given in the table below:

Practices followed in IPMs trial at Zone V (Central), *Kharif* 2023

Practices	Practices followed by three farmers at Jagdalpur							
	IPM Practices	Farmers Practices						
Area	1 acre each farmer	1 acre each farmer						
Variety	Bamleshwari	Bamleshwari						
Nursery	Application of 5 kg N, 3 kg P, 1.2 kg K / 400m ² nursery	 Application of 2 kg N, 1 kg P / 400m² nursery 						
Main field	 Application of 35 kg N, 23 kg P, and 15 kg K per acre Seedlings transplanted at a spacing of 20/15 cm; Left alleyways of 30 cm after 10 rows. Applied Pyrazosulfuron ethyl 10 WP 500gm./ha Nitrogen top dressing at 45 DAT 	 Application of 23 kg N, 12 kg P, and 15 kg K per acre Hand weeding once 						

The incidence of dead hearts caused by stem borer is significantly higher in Sri Damodar's FP plot (13% DH) compared to the IPM plot (**Table 2.7.14**). Similarly, gall midge damage was significantly higher in the FP plot (12.7% SS) than in the IPM plot (1.9% SS). Low incidence of leaf folder (*% LFDL), whorl maggot (<7% WMDL), thrips (<9% THDL) was observed in both the treatments across the farmers' fields.

Location	Farmer Name	Treat	% DH/WE	% SS	% LFDL	% WMDL	%THDL	Yield kg/ha	
מחו	F1 = Sri Bhola Ram	IPM	2.9(1.7)b	3.5(1.8)b	4.0(2.1)b	4.1(2.1)b	3.7(2.0)b	4648(68)a	
JDP	Sethiya	FP	6.3(2.4)a	5.8(2.3)a	7.8(2.8)a	6.8(2.6)a	8.5(3.0)a	3944(63)b	
	LSD (0.05, 44df)		0.38	0.53	0.21	0.3	0.29	2.08	
חחו	F2 = Sri	IPM	4.7(2.2)b	7.2(2.6)a	1.9(1.5)b	3.6(2.0)b	2.9(1.8)b	4573(68)a	
JDP	Lakshminath	FP	8.1(2.8)a	7.8(2.8)a	6.8(2.7)a	6.5(2.6)a	5.0(2.3)a	3720(61)b	
	LSD (0.05,44 df)		0.38	0.37	0.2	0.29	0.23	2.42	
JDP	F3 = Sri Damodar	IPM	4.1(1.9)b	1.9(1.4)b	1.7(1.4)b	1.1(1.2)b	1.8(1.5)b	4520(67)a	
		FP	13.0(3.5)a	12.7(3.5)a	4.4(2.2)a	6.3(2.5)a	7.7(2.8)a	3812(62)b	
	LSD (0.05,44 df)			0.41	0.23	0.28	0.23	2.42	
	Treatments								
	T1 = IPM		1.1(2.0)b	4.2(1.9)b	2.5(1.7)b	2.9(1.8)b	2.8(1.8)b	4580(68)a	
	T2 = FP		2.4(2.9)a	8.8(2.9)a	6.3(2.6)a	6.5(2.6)a	7.1(2.7)a	3825(62)b	
	LSD (0.05,264)		0.24	0.25	0.12	0.16	0.14	1.05	
	DAT								
	D1 = 30 DAT		0.7(1.5)d			2.8(1.7)c			
	D2 = 45 DAT		1.4(2.2)c	7.0(2.6)b	2.9(1.8)c	5.0(2.3)b	4.0(2.0)b		
	D3 = 60 DAT		1.8(2.5)bc	9.6(3.0)a	3.7(2.0)b	6.3(2.5)a	5.5(2.3)a		
D4 =75 DAT		2.1(2.6)b	6.9(2.5)b	5.2(2.3)a		5.4(2.3)a			
D5 = 90 DAT		1.9(2.6)b	2.5(1.5)c	5.8(2.4)a					
	D6 = Pre har		2.6(3.1)a						
	LSD (0.05,264 df)		0.41	0.35	0.17	0.2	0.17		

Table 2.7.14 Insect Pest incidence in IPMs trial in Zone V (Central), Kharif 2023

Figures in parenthesis are Atkinson's transformed values. Means in a column followed by same letter are not significantly different from each other

At this location, the weed population recorded at Active Tillering and Panicle Initiation stages, was lower than farmers practice by 40.7 and 36.4% respectively. The mean grain yield advantage was 18.8% in IPM adopted plots (**Table 2.7.15**).

Incidence of leaf blast, neck blast, sheath blight and brown spot was recorded in both IPM and FP plots at this location. With respect to leaf blast and neck blast, in the IPM field, the disease progress in terms of AUDPC values were reduced from 412 to 164 and from 248 to 167, respectively. Similarly, sheath blight and brown spot diseases were managed using the IPM practices wherein the disease progress was reduced from 421 to 173 and from 125 to 78, respectively. Similar trend was also observed in case of false smut disease incidence, wherein the disease was nil in the IPM practices adopted field as compared to the farmer practices (56.7%) **(Table 2.7.15)**

Table 2.7.15 Weed population, AUDPC values of rice diseases at Zone V	(Jagdalpur), Kharif 2023
---	--------------------------

		Weed p		False smut				
Location	Treatments	Active tillering stage	Panicle initiation stage	Leaf Blast	Neck blast	Sheath blight	Brown spot	(DI%)
14	IPM	3.4(1.9)	7.5(2.8)	164	167	173	78	0
LI	FP	5.7(2.5)	11.7(3.5)	412	248	421	125	56.7

L-Location; IPM - Integrated Pest Management Practices; FP- Farmer Practices; AUDPC- Area under disease progress curve

Grain yield was significantly high in IPM plots at all three farmers' fields as compared to FP plots (**Table 2.7.16**). Across the farmers, the average grain yield was 4580 kg/ ha in the IPM plot as against 3725kg/ ha in the FP plot. Higher grain

yield resulted in higher gross returns and higher BC ratio in IPM fields compared to FP fields.

Location	Name of the Farmer	Treatments	Yield (q/ha)	Gross Returns (Rs.)	Cost of Cultivation (Rs.)	Net Returns (Rs.)	BC ratio
JDP	F1 = Bhola	IPM	46.48	97608	20750	76858	4.70
	Ram Sethiya	FP	39.44	82824	23750	59074	3.49
JDP	F2 = Sri	IPM	45.73	96033	20750	75283	4.63
	Lakshminath	FP	37.2	78120	23750	54370	3.29
JDP	F3 = Sri	IPM	45.2	94920	20750	74170	4.57
	Damodar	FP	35.12	73752	23750	50002	3.11
		IPM	45.80				4.64
		FP	37.25				3.29

Table 2.7.16 Returns and BC ratio in IPMs trial at Zone V (Central), kharif 2023

Price of Paddy = F1, F2 & F3 = Rs. 2100/q

<u>Zone VI – Western areas</u>

IPM trial was conducted in seven farmers' fields at 3 locations in this zone. The details of farmers and villages are given below:

S. No	Location	State	Village, district	Farmer Name
1	Karjat	Maharashtra	Kirawali, Raigad	F1- Sri Prabhakar Badhekar
2	Karjat	Maharashtra	Vadap, Raigad	F2 - Sri Param Patil
3	Karjat	Maharashtra	Wanjale, Raigad	F3- Sri Ravindra Thakare
4	Navasari	Gujarat	Abrama, Navsari	F4 = Sri Bhanubhai Patel
5	Nawagam	Gujarat	Kathwada, Kheda	F5 - Sri Vipulbhai Jayantibhai Bharwad
6	Nawagam	Gujarat	Kathwada/ Kheda	F6 - Sri Rakeshbhai Ramsangbhai Chunara
7	Nawagam	Gujarat	Nawagam farm	F7 = NWG farm

The package of practices followed in IPM and FP plots are given in the following table:

Package of practices followed in IPMs trial in Zone VI (Western), Kharif 2023					
Practices followed by three farmers in IPMs trial at Karjat, Kharif 2023					
	IPM practices	Farmers practices			
Area	1 acre	1 acre			
Varieties	F1- Sri Prabhakar Badhekar - Karjat 7 'arieties F2 - Sri Param Patil - Karjat 7 Sri Ravindra Thakare – Karjat 7				
Nursery	Seed treatment with carbendazim @ 10 g/ 10 kg seed Raised bed 3x1m treated with rice husk (hull) ash @3kg/bed				
Main field	 Deep ploughing Application of FYM 4 T, Suphala 125 Kg, Urea 44 Kg 2-3 seedlings transplanted at a spacing 20 x15 cm. Alleyways of 40cm left after every 10 rows Bispyribasodium 250ml/ha (Nomini gold). Pheromone traps @ 8 / acre Use of bird perches in the field Use Vaibhav sickle for harvesting Application of Cartap hydrochloride 18 kg/ha (one application) 	 Deep ploughing Application of FYM 2 T, Urea 50 kg, Suphala 50 kg 4-5 seedlings transplanted randomly Hand weeding once Phorate 10 kg/ha (two applications) 			
Practices followed by three farmers in IPMs trial at Nawagam, Kharif 2023					
Area	1250 sq.m	1250 sq.m			
Variety	Gurjari	Gurjari			

Farmers	F5 - Sri Sri Vipulbhai Jayantibhai Bharwad F6 - Sri Rakeshbhai Ramsangbhai Chunara F7 – NWG farm	
Main field	 Application of 80 kg urea, 54 kg DAP and 20 kg Zinc sulphate 2-3 seedlings transplanted at a spacing 20 x15 cm. Alleyways of 40cm left after every 10 rows Bispyribasodium 10% SC @ 0.4 ml/ liter water (Nomini gold). One-hand weeding Applied Neemazal @ 3 ml/ liter water Use of bird perches in the field Sprayed Chlorantraniliprole 18.5 SC @ 150 ml/ ha Applied Carbendazim + mancozeb @ 2-2.5 g/lit Applied Pymetrozine 50 WP @ 6.0g/10 L water 	 Application of 200 kg urea, 80 kg DAP and 20 kg Zinc sulphate 4-5 seedlings transplanted randomly Applied Pendimethalin 30% EC @ 50 ml/ 10liter water Hand weeding once Applied Chlorantraniliprole 0.4 GR @ 10 kg/ha Applied Cartap hydrochloride 4 G @ 20 kg/ha

Incidence of stem borer and leaf folder was observed across locations in both IPM and FP plots (**Table 2.7.17**). However, WBPH was observed only at Nawagam in all three farmers' fields. Though the incidence of dead hearts and leaf folder damage was low in both plots, there are significant differences between the treatments. The incidence of WBPH was significantly high in the IPM field (22/hill) as compared to the FP plot (16/hill). Across locations, incidence of pests was significantly low in IPM plot as compared to FP plot (**Figure 2.7.3**).

At Navsari, IPM trial conducted showed significant reduction in weed population 59.8 and 48.0% and dry weed biomass 58.5 and 42.6% at Active Tillering and Panicle Initiation stages. Significant improvement in grain yield advantage was noticed with 6.5% in IPM adopted fields (**Table 2.7.18**). At Nawagam, IPM trial conducted showed significant reduction in weed population by 39.8 and 47.0%, and dry weed biomass by 72.7 and 30.5% at Active Tillering and Panicle Initiation stages respectively. The grain yield advantage was 11.5% in IPM adopted fields. At Vadagaon, weed population at Active Tillering and Panicle Initiation stages was lower than farmers practice by 76.9 and 69.2% and weed dry biomass by 76.4 and 69.9% respectively. The mean grain yield advantage was 45.1 % in IPM adopted plots.

	Treatments		%DH/WE	% LFDL	WBPH	Yield kg/ha
K IT	E1 Sri Drobbokor Bodbokor	IPM	3.2(1.8)b	3.1(1.9)a		4616(68)a
NJI	F I- SII Plabilakai Baullekai	FP	7.6(2.7)a	3.2(1.8)a		3900(62)b
	LSD (0.05, 36df)	·	0.39	0.23		1.84
K IT	KIT F2 Sri Baram Batil	IPM	3.6(1.9)b	2.3(1.6)b		4540(67)a
NJ I	FZ - SII Falaini Falii	FP	7.4(2.7)a	4.0(2.1)a		3776(62)b
LSD (0.05, 36df)			0.38	0.32		2.39
KJT	E2 Sri Dovindro Thakara	IPM	7.5(2.7)a	1.6(1.3)b		4504(67)a
	F3- SITRAVITUTA TTAKATE	FP	7.5(2.7)a	4.8(2.2)a		3824(62)b
	LSD (0.05, 36df)		0.34	0.27		1.04
NIV/C	E4. Sri Phonubhai Datal	IPM	2.4(1.5)b	2.2(1.6)a		4464(67)a
NVS	F4- SII BIlaliubilai Falei	FP	5.8(2.3)a	3.0(1.8)a		3832(62)b
LSD (0.05, 36df)			0.45	0.42		2.83
	E5 Sri Vinulbhai Jayantibhai Bhanwad	IPM	3.5(1.9)b	3.0(1.7)b	14.0(4)b	5660(75)a
INVVG	F5 - SH VIPUDHAI JAYAHUDHAI DHAIWAU	FP	5.3(2.2)a	4.6(2.1)a	23.0(5)a	4740(69)b

 Table 2.7.17 Insect Pest incidence in IPMs trial in Zone VI (Western), Kharif 2023

	LSD (0.05, 36df)		0.12	0.22	0.39	4.06
		IPM		3.3(1.8)b	16.0(4)b	5780(76)a
NVVG F6 - Sri Rakesh	F6 - Sri Rakeshbhai Ramsangbhai Chunara	FP	5.6(2.2)a	4.8(2.2)a	23.0(4)a	4544(67)a
	LSD (0.05, 36df)		0.11	0.21	0.24	10.41
		IPM	4.4(2.0)b	3.3(1.8)b	17.0(4)b	6028(78)a
NWG	F7 - NWG farm	FP	5.1(2.2)a	4.5(2.1)a	20.0(4)a	4792(69)b
	LSD (0.05, 36df)	0.12	0.19	0.22	6.89	
	Treatments					
	T1 = IPM		2.3(5.8)b	2.7(5.3)b	16.0(9)b	5085(48)a
	T2 = FP		3.4(6.9)a	4.1(6.4)a	22.0(10)a	4201(44)b
	LSD (0.05,252)		0.21	0.27	0.36	0.49
	DAT					
	D1 = 29 DAT		1.6(5.1)d	2.1(4.7)c	5.0(5)c	
	D2 = 36 DAT	0.9(3.5)e				
D3 = 50 DAT			2.6(6.4)c	2.8(5.4)b	29.0(13)b	
D4 = 71 DAT			4.0(7.9)b	5.3(7.3)a	37.0(15)a	
	D5 = 85 DAT	5.1(8.7)a				
	LSD (0.05,252)	0.33	0.33	0.51		

ICAR-IIRR Annual Progress Report 2023, Vol. 2 – Entomology

Figures in parenthesis are Atkinson's transformed values. Means in a column followed by same letter are not significantly different from each other

In this zone, the trial was conducted at Nawagam at 3 locations for the management of sheath rot. At all the three locations, spraying of carbendazim 12% + mancozeb 63 % effectively reduced the disease progress as compared to farmer practices, wherein no fungicide spray was taken up. At Navsari, the trial was conducted at one location on diseases *viz.*, sheath blight and brown spot. In the IPM field, application of hexaconazole 5 EC (2 ml/lit) at 60 DAT effectively reduced the sheath blight disease development (AUDPC value 416) as compared to farmer practice (AUDPC value 852). Similarly, AUDPC value of brown spot was reduced from 930 to 626 due to adoption of IPM practices (**Table 2.7.19**).

		Weed population (No./m2)		Weed dry bio	omass (g/m2)
Location	Treatments	Active tillering	Panicle initiation	Active tillering	Panicle initiation
		stage	stage	stage	stage
NAVSARI	IPM	7.0(2.7)	10.6(3.3)	8.8	13.7
	FP	17.4(4.2)	20.4(4.6)	21.3	24.2
	Exp. mean	3.5	3.9	15.1	18.9
	CD(0.05)	0.4	0.3	2.7	3.5
NAWAGAM	IPM	78.4(8.6)	81.5(9.0)	33.7	48.9
	FP	130.2(11.3)	153.7(12.3)	121.7	70.4
	Exp. mean	10.0	10.7	77.7	59.7
	CD(0.05)	1.3	1.1	111.3	14.5
VADAGOAN	IPM	11.9(3.5)	18.9(4.4)	21.7	31.0
	FP	51.5(7.2)	61.5(7.8)	91.9	102.9
	Exp. mean	5.4	6.1	56.8	66.9
	CD(0.05)	0.3	0.2	6.3	6.0

Table 2.7.18 Weed parameters in Zone VI (western areas), Kharif 2023

Figure 2.7.3 Box plots of the incidence of dead hearts, leaf folder damage, WBPH and grain yield in IPM and FP plots across locations in Zone VI (Western areas)

		AUDPC Values				
Location	Treatment	Nawagam	Navsari			
		Sheath rot	Sheath blight	Brown spot		
L1	IPM	563	416	626		
	FP	705	852	930		
L2	IPM	416	-	-		
	FP	539	-	-		
L3	IPM	404	-	-		
	FP	574	-	-		

Table 2.7.19 AUDPC values of rice diseases recorded at Zone VI, Kharif 2023

L-Location; IPM – Integrated Pest Management Practices; FP- Farmer Practices; AUDPC- Area under disease progress curve

Grain yield was significantly higher in IPM plots compared to FP plots across the locations. The average grain yield of 5085 kg/ ha was recorded in IPM treatment as compared to farmers' practices (4201 kg/ ha). This high grain yield resulted in high gross returns and a high BC ratio in IPM plots (2.49) as compared to FP plots (2.28) across locations (**Table 2.7.20**).

Location	Farmers	Treatments	Yield (q/ ha)	Gross returns (Rs.)	Cost of cultivation (Rs.)	Net returns (Rs.)	BC ratio
	F1- Sri Prabhakar	IPM	46.16	100767	43436	57331	2.32
NJ I	Badhekar	FP	39.00	85137	37455	47682	2.27
K IT	E2 Sri Param Patil	IPM	45.40	99108	43436	55672	2.28
NJ I	rz - Sh raidh rau	FP	37.76	82430	37455	44975	2.20
K IT	F3- Sri Ravindra	IPM	45.04	98322	43436	54886	2.26
KJI	Thakare	FP	38.24	83478	37455	46023	2.23
NVS	F4- Sri Bhanubhai Patel	IPM	44.64	89280	50400	38880	1.77
		FP	38.32	76640	42600	34040	1.80
NWC	F5 - Sri Vipulbhai Jayantibhai Bharwad	IPM	56.60	123388	43144	80244	2.86
NWG		FP	47.40	103332	40256	63076	2.57
NWC	F6 - Sri Rakeshbhai	IPM	57.80	126004	43147	82857	2.92
INVO	Ramsangbhai Chunara	FP	45.44	99059	40554	58505	2.44
NIMO	E7 NIM/C form	IPM	60.28	131410	43147	88263	3.05
INVVG		FP	47.92	104466	42262	62204	2.47
		IPM	50.85				2.49
		FP	42.01				2.28

Table 2.7.20 Returns and BC ratio in IPMs trial at Zone VI (Western), Kharif 2023

Price of Paddy = F1, F2, F3 = Rs. 2183/q; F4 = Rs. 2000/q; F5, F6 & F7 = Rs. 2180/q

Zone VII - Southern areas

IPMs trial was conducted at 14 farmers' fields in 5 locations during *Kharif* 2023 and in three farmer's field at two locations during *Rabi* 2022-23. The details of farmers and villages are given below:

Zone VII					
S. No	Location	State	Village, district	Farmer Name	
1	Mandya	Karnataka	Mallanayakanakatte, Mandya	F1 – Sri Puttaswamy	
2	Mandya	Karnataka	Bilaguli, Mandya	F2 - Sri Annabasavaraju	
3	Mandya	Karnataka	Ganadalu, Mandya	F3 – Sri Chikkonu	
4	Aduthurai	Tamil Nadu	Thiruneelakudi, Thanjavur	F4- Smt Revathi	
5	Aduthurai	Tamil Nadu	Melamaruthuvakudi, Thanjavur	F5 - Sri R Ramakrishnan	
6	Aduthurai	Tamil Nadu	Thiruvaduthurai, Mayiladuthurai	F6- Sri Sekar	
7	Bapatla	Andhra Pradesh	Yajali, Karlapalem	F7 – Sri Movva Krishnam Raju	
8	Bapatla	Andhra Pradesh	Jammulapalem, Bapatla	F8 – Sri Boyina Venkaiah	
9	Gangavathi	Karnataka	Sharanabasaveshwar camp, Koppal	F9 = Sri Hanumanthappa	
10	Gangavathi	Karnataka	Hosalli village, Gangavathi	F10 = Sri Basavaraj	
11	Rajendranagar	Telangana	Sajjanpally, Ranga Reddy	F11 = Sri E Ashok	
12	Rajendranagar	Telangana	Sajjanpally, Ranga Reddy	F12 = Sri V.Ravinder	
13	Rajendranagar	Telangana	Sajjanpally, Ranga Reddy	F13 = Sri E Narayana	
14	Maruteru	Andhra Pradesh	Vadali, Penugonda mandal	F14 – Sri T Jogeswara Rao	
15	Maruteru	Andhra Pradesh	Vadali, Penugonda mandal	F15 – Sri N Srinivasa Rao	
16	Pattambi	Kerala	Kondurkara, Palakkad	F16 – Sri Ummer	

The package of practices followed in both IPM and FP plots by various farmers are given in the table below:

Practices fol	lowed in IPMs trial at Aduthurai, <i>Kharif</i> 2023	
	IPM practices	Farmers practices
Area/ variety	1 ha; TPS5, ADT 51	1 ha; TPS5, ADT 51
Nursery	Seed treatment with carbendazim @ 2g / kg seed	
Main field	 Transplanting the seedlings at a spacing of 20 x 15 cm. Leaving alleyways of 30 cm after every 2 m or 10 rows. Fertilizers applied as per local recommended fertilizer dose. Application of Butachlor 1.5 kg a.i./ ha within one week after transplanting the crop. At 15 DAT, installed pheromone traps with 5 mg lure @ 8 traps/ha for stem borer monitoring One spray of Cartap hydrochloride 50 WP @ 600 g /ha at 60 DAT Application of Propiconazole 	 Five rounds of insecticides followed due to gall midge, stem borer, leaf folder and BPH incidence. Thiamethoxam 100 g/ha at 25 DAT for thrips Chlorantraniliprole 18.5 SC @ 150 ml/ha at 45 DAT for stem borer and leaf folder Profenophos 20 EC @ 1000ml/ha at 70 DAT for stem borer and leaf folder Applied Cartap hydrochloride 10kg/ha Sprayed Copper oxy chloride, Mancozeb+ carbendazim (saaf), Propiconozole
Practices fo	llowed in IPMs trial at Gangavathi, <i>Kharif</i> 2023	
Sri Hanuma	nthappa, Bapireddy camp	
Area	1 acre	1 acre
Variety	BPT 5204	BPT 5204
Nursery	Seed treatment with Trichoderma Applied Fipronil 0.3G	Sprayed Chlorpyriphos 20 EC @ 2 ml/liter and Fipronil 5SC @ 2 ml/l
Main Tielo	 Fertilizer application @ 60:30:30 kg NPK /ha Forming alleyways of 30 cm after every 2 m Grown cowpea on bunds Installation of pheromone traps @ 8 traps/ ha Fipronil 0.6G @ 4 kg/ acre Trichogramma cards 4 releases @ 40,000/ acre Followed alternate wetting and drying Sprayed Metarhizium @ 3 g/ liter water Application of Flupyrimin 2% GR @ 3 kg/ acre 	 Fertilizer application @ 120:60:60 kg NPK /ha Application of weedicide, Butachlor @ 400 ml/ac Application of Ferterra @ 4 kg at 25 DAT Sprayed Chlorpyriphos 20 EC @ 2ml / liter Application of Triflumezopyrim @ 94 ml / acre at 60 DAT Sprayed Lamda cyahalothrin @ 1 ml/l Sprayed Thiamethoxam @ 0.5g/lit
Sri Basavaraj	Hosalli	
Variety	BPT 5204	BPT 5204
Nursery	Seed treatment with Thiamethoxam 25 WG @ 4 g/ kg seed	Sprayed Chlorpyriphos 20 EC @ 2 ml/liter and Carbosulfan 25 EC @ 2 ml/ liter
Main field	 Forming alleyways of 30 cm after every 2 m Grown marigold on bunds Installation of pheromone traps @ 8 traps/ ha Trichogramma cards 4 releases @ 40,000/ acre Chlorantraniliprole 0.4G @ 4 kg/ acre Application of Triflumezopyrim @ 94 ml / acre 	 Applied granules, Chlorantraniliprole + Thiamethoxam @ 4 kg/ acre Sprayed Chlorpyriphos 20 EC @ 2ml / liter Applied Fipronil 0.3G @ 7.5 kg/ acre Applied Pymetrozine @ 0.6g/liter Spraying Imidachloprid @ 0.5 ml/l
Sri Chikkon	nowed in IPMS trial at Mandya, Kilarni 2023	
		1.000
Variety	MSN 99	
Nurserv	Seed treatment with Carbandezim @ 2g / kg seed	
Main field	 Urea 45 kg/ acre, SSP 125 kg/ acre, MOP 35 kg/ acre, Top dressing 45 kg urea Transplanting with 20 x 15cm spacing Forming alleyways of 30 cm at every 2 m Londax power @ 4kg/ac - herbicide at 3 DAT + one hand weeding Installation of pheromone traps 5 mg lure for 	 Urea 50 kg/ acre, 10:26:26 complex fertilizer 100 kg/ ac, MOP 25 kg/ acre Random transplanting Applied Pretilachlor 50 EC @ 400ml/ acre + two hand weedings Fipronil 0.3G @ 10 kg/acre Flubendiamide 48%SC @ 0.1 ml/liter
	Application of Fipronil 5SC @ 1.5ml/liter water	 I ebuconazole @ 0.4 g/ liter Buprofezin 25 EC @ 1 4 ml/ liter

Package of practices followed in IPMs trial in Zone VII (Southern), Kharif 2023

	Zine sulphate @ 0 log/ serve	O antiguarda incigation
	• Zinc sulphate @ 8 kg/ acre	Continuous irrigation
	Iricyclazole 75WP @ 0.6g/lit	
	 Followed alternate wetting and drying 	
Sri Annabasav	varaju, Bilaguli village, Mandya district, Karnataka	
Area	1 acre	1 acre
Variety	MSN 99	MSN 99
Nurserv	• Seed treatment with Carbandezim @ 2g / kg seed	
Main field	• Urea 45 kg/ acre SSP 125 kg/ acre MOP 35 kg/	• Urea 100 kg/acre, 20:20:0:13 @ 50 kg/acre
	acre Ton dressing 45 kg urea	10:26:26 @ 50 kg/acre
	Transplanting with 20 x 15cm spacing	Pandomly transplanted
	• Forming allowways of 30 cm at every 2 m	 Rutashlar @ 100 ml/ acro + two hand woodings
	 I ondex never @ 4kg/co. herbielde et 2 DAT + ene 	Chlorentrenilingele 0.4 CD @ 4kgl/sere
	• Londax power @ 4kg/ac - herbicide at 5 DAT + one	Chiorantranniprole 0.4 GR @ 4kgi/acre
	hand weeding	Cartap hydrochloride 505P @ 2gm/l (400g/
	Installation of pheromone traps for monitoring stem	acre)
	borer 5 mg lure @ 8 traps / ha	Azoxystrobin + Difenconazole (amistar top)
	Application of Fipronil 0.3G @ 10 kg/acre	@1ml/lit
	 Sprayed Tricyclazole 75 WP @ 0.6g/ liter water 	 Imidacloprid17.8SL@0.3ml/lit
	 Zinc sulphate @ 8 kg/ acre 	 Continuous irrigation
	 Alternate wetting and drying 	
Sri Puttaswa	my, Mallanayakanakatte village, Mandya district Karr	nataka
Area	1 acre	1 acre
Variety	RNR 15048	RNR 15048
Nursery	• Seed treatment with Carbandezim @ 2g / kg seed	
Main field	• Uroa 45 kg/ apro SSP 125 kg/ apro MOP 35 kg/	Pandamly transplanted
	• Orea 45 kg/ acre, SSF 125 kg/ acre, MOF 55 kg/	 Ranuoliniy iranspianteu Uraa 50 kg/ aara, 10:26:26 aamalay fartilizar
	a Transplanting with 20 x 15 cm analing	• Orea 50 kg/ acre, 10.20.20 complex renulizer
	Fransplanting with 20 x form sharing Forming allowways of 20 am at every 2m row	Drotileshler 5050 (Defit) @400ml/cere + 2 hand
	• Forming aneyways of 50 cm at every 2m row	
	• Londax power @ 4kg/ac - nerbicide at 3 DAT + one	weedings
	nand weeding	• Carboturan 4G (@ 8 kg/ acre
	Installation of pheromone traps for monitoring stem	Chlorantraniliprole 18.5SC (Coragen) @
	borer 5 mg lure @ 8 traps / ha	60ml/acre
	Application of Chlorantraniliprole 0.4G @ 4 kg/	Fipronil 0.3G@10kg/acre
	acre	 I ebuconozole @0.4gm/lit
	• Sprayed Tricyclazole 75 WP @ 0.6g/ liter water	 Dinotefuran 20% SG @ 250g/ ha at 70 DAT
	 Alternate wetting and drying was followed 	 Continuous irrigation
Practices fol	lowed in IPMs trial at Bapatla, Kharif 2023	
Sri Movva K	rishnam Raju, Yajali village, Karlapalem mandal, And	hra Pradesh
Area	• 2000 sq.m	• 2000 sq.m
Variety	• BPT 5204	• BPT 5204
Nursery	• Seed treatment with Carbendazim @ 10g/ kg seed	
,	Application of Carbofuran granules @ 800g/ 5 cent	
Main Field	Formation of alleyways of 30 am for every 2 m	• Formation of alleyways of 30 am for every 2 m
	■ NPK @ 90-60-40 kg/ ba	NPK @ 120-80-40 kg/ ba
	• Right $(0.50-00-40 \text{ kg})$ ha	 Application of Londay power @10kg/ba within
	All mix @ 20 g/agra at 25 DAT	Application of Londax power @ Toky/na within one week after transplantation+one manual
	All-TITX @ 20 9/dcle at 25 DAT	
	Installed pheromone traps (@ o traps/ ha for stern berer menitering	Application of dinotofuron, hymotrozing and
	Doler monitoring.	• Application of unoteruran, pymetrozine and
	Release of egg parasitold, 1. Chilonis @ C0000/acro from 45 DAT 2 times in 15 days interval	Application of fortering groundles and conten
	60000/acre from 45 DAT 3 times in 15 days interval	• Application of ferterra granules and cartap
	• One spray of chlorantraniliprole @ 0.3 mi/l at 60	a gli against stom barar
		5 y/i against stem borer
	Spraying of Hexaconazole against sheath blight	Spraying of indoxacarb for leaf folder, stem
	Spraying of tricyclazole @ 0.6 g/l against leaf blast	burer & Proteriopnos for leaf & panicle mite
		Spraying of tricyclazole and isoprothiolane
		against leat blast
		Spraying of hexaconazole and azoxystrobin
		+difenconazole (amistar top) against sheath
		blight
Sri Boyina V	enkaiah, Jammulapalem, Bapatla mandal, Andhra Pra	adesh
Area	• 2000 sq.m	• 2000 sq.m

Variety	• BPT 2595	• BPT 2595
Nursery	 Seed treatment with Carbendazim @ 10g/ kg seed Application of Carbofuran granules @ 800g/ 5 cent 	
Main field	 Formation of alleyways of 30 am for every 2 m NPK @ 90-60-40 kg/ ha 	 Formation of alleyways of 30 am for every 2 m NPK @ 120-80-40 kg/ ha
	Bis-pyribac sodium@ 250 ml/ha at 15 DAT and All-mix @ 20 g/acre at 25 DAT	Application of Londax power @10kg/ha within one week after transplantation+one manual
	 Installed pheromone traps @ 8 traps/ ha for stem borer monitoring. 	weeding Application of dinotefuran, pymetrozine and
	 Release of egg parasitoid, T. Chilonis @ 60000/acre from 45 DAT 3 times in 15 days interval One spray of chlorantrapiliprole @ 0.3 ml/l at 60 	 triflumezopyrim against brown planthoppers Application of ferterra granules and cartap hydrochloride granules spraving of aceptate @
	DAT	3 g/l against stem borer
	Spraying of tricyclazole @ 0.6 g/l against leaf blast	 Spraying of intoxiccular longer, stern borer & Profenophos for leaf & panicle mite Spraying of tricyclazole, and isoprothiolane
		against leaf blast
		+difenconazole (amistar top) against sheath blight
Practices follo	wed in IPMs trial at Rajendranagar, Kharif 2023	
Variety	BPI 5204	BPI 5204
Nursery	 Applied 4.4 kg urea, 6.25 kg SSP and 1.75 kg MOP Seed treatment with Trichoderma viridae @ 10 g/ kg seed 	Application of 6 kg urea, 8 kg SSP and 3 kg MOP
Main field	Applied 80 kg N,90 kg P and 15 kg K	Application of 120 kg N, 80 kg P and 20 kg K. Applied weedicide: Depaylfreen Method .
	Adopted alleyways Applied woodigide Cybalofon butyl + Ponoyulam	 Applied weedicide. Bensuluion methyl + Pretilachlor (Londay Power T) @ /kg/acre at 3-
	(Vivaya) @ 1000ml/acre + one hand weeding	5 DAT
	Applied Chlorantraniliprole @0.4G @ 4 kg/ acre	• Sprayed Chlorpyriphos @ 2.5 ml/ liter water
	Applied Chlorantraniliprole @ 60ml/acre at PI to besting & Dranicanazala @ 200ml/acre for Crein	Hand weeding Sprayed Carter bydraeblarida 505D @ 2a/l
	discolouration and sheath rot	(400g/ acre)
		Sprayed Tebuconazole + trixystrobin (Nativo) @ 80g/acre
Practices for	llowed in IPMs trial at Maruteru, Rabi 2022- 23	
Sri T Joges	wara Rao, Vadali village, Penugonda mandal, Andhra	Pradesh
Sri N Sriniva	asa Rao, Vadali village, Penugonda mandal, Andhra P	/radesh
Area	• 2000 sq.m	• 2000 sq.m
Variety	• MIU 1121	• MIU 1121
Nursery	Seed treatment with Trichoderma @ 10 g/kg seed Application of Fipronil 0.3G @ 500g/ 5 cents nursery	Application of carboturan 3 G @ 800 g/5 cents of nursery before 7 days pulling of nursery
Main field	 Transplanted seedlings at a spacing of 20 x 15 cm Clipping of leaf tips before transplantation 	Bengal method of transplantation (average spacing of 28x28 cm spacing)
	 Formation of alleyways of 30 cm after every 2 m NPK @ 180-90-90 kg/ ha 	 Formation of alleyways of 30 cm after every 2 m NPK @ 225-80-90 kg/ha
	Application of metasulfuron ethyl+chlorimuronethyl (Almix) @ 20g/ha mixed with fine sand (50 kg cand/ha)	Application of Londax power @10kg/ha within one week after transplantation+one manual weeding
	 Installation of pheromone traps @ 3 per acre for stem borer monitoring 	Application of ferterra granules, Carbofuran 3 G granules and spraying of acephate @ 3 g/l
	Installation of pheromone traps @ 8 per acre for mass trapping of stem borer	 Application of dinotefuran, pymetrozine and
	• Spraying of neemazal @ 3ml/liter of water at 45	acephate against brown planthoppers
	DAT • Spraving of chlorantraniliprole 18 5 SC @ 60	Spraying of this contraction of the second sec
	ml/acre against stem borer and leaf folder at 65	+difenconazole (amistar top) against sheath blight
		 Spraying of blitox against false smut.

	Spraying of triflumezopyrim 10 SC @ 94 ml/acre at 60 DAT	
	Spraying of hexaconazole 5 EC @ 2 ml/acre	
	• Spraying of propiconazole @ 1ml/liter against false	
	smut.	
Practices fol	lowed in IPMs trial at Pattambi, Rabi 2022- 2023	
Area	• 4000 sq.m	• 4000 sq.m
Variety	Mattatriveni	Mattatriveni
Nursery	 Seed treatment with Pseudomonas flourescens @ 10 g/ kg seed Seedling dip with Pseudomonas @ 20 g / litre of water 	
Main field	 NPK @ 70:35:35 kg/ha Three Sprays with Eco-neem 1 %at 20, 45 and 65 and cartaphydrochlorie 4%G @ 1000g a.i/ha at 80 DAT <i>Trichogramma japonicum</i> for stem borer and <i>T.chilonis</i> for leaf folder six releases each at weekly intervals Pheromone mass trapping done with 8 traps/ acre 	 90 Kg Factomphos,80 Kg Urea, 35Kg potash Spray with Chlorantanilipole, flubendiamide, lambdacyhalothrin and streptocycline at 30, 60, 75 and at 95 DAT

Incidence of stem borer, gall midge, leaf folder, caseworm and BPH was observed in various farmers' fields in both IPM and FP plots **(Table 2.7.21)**. At Aduthurai, stem borer incidence was significantly high in all three farmers' practices (30.0 - 42.3% DH) than in IPM plots (12.5-13.3% DH). Similarly gall midge incidence was also significantly high in FP plots (18.0-34.0% SS) as compared to IPM plots (7.1-17.5% SS). Leaf folder incidence was significantly low in IPM plots (6.5 - 18.2% LFDL) compared to FP plots (19.2-22.4% LFDL). BPH incidence was significantly high in IPM plots (49.0-53.0/hill) as compared to FP plots (10.0/hill) in both the farmer's fields at Gangavathi while the incidence was at par in both the treatments at Sri E Narayan's field at Ranga reddy district. BPH incidence was significantly high in FP plots (32.0-36.0/hill) than in IPM plots (24.0-26.0/hill) in both the farmers' fields at Maruteru. Low incidence of caseworm was observed at both Mandya and Pattambi locations in various farmers' fields.

					1	11		
Location	Farmer Name	Treatments	%DH/WE	% SS	% LFDL	%CWDL	BPH	Yield kg/ha
	F1 = Sri	IPM	5.1(2.1)b		1.5(1.3)b	0.9(1.1)b	2(2)b	5172(72)a
IVIND	Puttaswamy	FP	12.3(3.3)a		3.1(1.8)a	2.2(1.6)a	5(2)a	4572(67)a
LSD (0.05,28)			0.75		0.30	0.21	0.34	11.43
MND	F2 = Sri	IPM	6.8(2.5)b		2.3(1.6)b	1.5(1.3)b	3(2)b	5796(76)a
	Annabasavaraju	FP	14.9(3.7)a		8.2(2.5)a	4.8(2.2)a	11(3)	5156(72)a
	LSD (0.05,28)		0.64		0.68	0.26	0.35	13.50
	F3 = Sri	IPM	5.3(2.2)b		2.4(1.6)b	1.8(1.4)b	3(2)b	7336(85)a
IVIIND	Chikkonu	FP	11.4(3.3)a		4.3(2.1)a	4.6(2.2)a	11(3)a	6096(78)a
LSD (0.05,28)			0.55		0.34	0.29	0.39	15.12
лот	F4 = Sri Revathi	IPM	12.5(3.0)b	17.5(3.9)b	8.9(2.4)b		0(1)b	6440(80)a
ADT		FP	42.3(6.1)a	34.0(5.6)a	22.4(4.2)a		9(3)a	5400(73)b
	LSD (0.05,28)		1.37	0.92	0.43		0.37	0.88
лот	F5 = Sri	IPM	13.2(3.3)b	7.1(2.5)b	6.5(2.2)b		1(1)b	
ADT	Ramakrishna	FP	30.0(5.1)a	20.4(4.3)a	19.8(3.9)a		11(3)a	
	LSD (0.05,28)		1.17	0.88	0.63		0.34	
ADT	F6 - Cri Caldar	IPM	13.3(3.3)b	8.4(2.8)b	18.2(3.6)a		5(2)b	
ADT	ru - Sh Sekhar	FP	38.1(5.9)a	18.0(4.0)a	19.2(3.8)a		15(4)a	
	LSD (0.05,28)		1.08	0.79	0.58		0.54	
BPT		IPM	1.9(1.5)b	9.8(2.9)a	1.9(1.5)a		8(3)a	6625(81)a

able 2.7.21 Insect Pest incidence	in IPMs trial in Zone VII	I (Southern), Kharif 2023
-----------------------------------	---------------------------	---------------------------

	F7 = Sri Movva	FP	3.8(1.9)a	5.2(2.2)b	1.9(1.5)a		9(3)a	6812(82)a
			0.12	0 15	0.06		0.21	3 20
	ESD (0.03,20)	IPM	3 7(1 Q)h	7 0(2 7)b	1.6(1.4)b		5(2)b	7050(8/1)2
BPT	Venkajah	ED ED	5.7(1.3)0	11.0(2.7)0	2.0(1.5)		7(2)2	7030(04)a
		11	0.0(2.2)a	0 12	0.06		0 15	5 07
	F9 = Sri	IPM	4 8(2 2)a	16 2(4 1)a	3 9(2 0)a		49(7)a	6228(79)a
GNV	Hanumanthappa	FP	1.6(2.2)a	50(23)b	17(1.5)b		10(3)b	5978(77)a
	I SD (0.05.28)		0.24	0.28	0.17		0.28	2.42
.	F10 = Sri	IPM	8.5(3.0)a	16.7(4.1)a	4.9(2.3)a		53(7)a	6269(79)a
GNV	Basavaraj	FP	1.8(1.5)b	7.4(2.8)b	0.7(1.1)b		10(3)b	6001(78)a
	LSD (0.05,28)	1	0.22	0.29	0.12		0.28	3.56
	F11 = Sri E	IPM	0.7(1.0)b		0.4(0.9)a		0(1)b	7829(88)a
RNR	Ashok	FP	2.2(1.3)a		0.0(0.7)b		19(3)a	7364(86)a
	LSD (0.05,28)	•	0.15		0.12		0.44	9.01
	F12 = Sri	IPM	0.0(0.7)b		0.2(0.8)b		15(3)b	6450(80)a
RINK	V.Ravinder	FP	1.9(1.3)a		0.7(1.0)a		29(3)a	6222(79)a
LSD (0.05,28)			0.18		0.14		0.33	3.79
DND	F13 = Sri E	IPM	1.0(1.0)a		2.6(1.3)a		55(4)a	6486(81)a
	Narayana	FP	1.8(1.2)a		0.7(1.0)b		51(4)a	5993(77)b
LSD (0.05,28)			0.22		0.19		0.74	2.04
МТП	F14 = Sri T	IPM	2.3(1.4)a	0.6(0.9)a			24(4)b	9000(95)a
WITO	Jogeswara Rao	FP	2.5(1.4)a	0.7(1.0)a			32(5)a	9550(97)a
	LSD (0.05,28)		0.29	0.26			0.34	4.51
МТП	F15 = Sri N	IPM	2.0(1.4)a	0.5(0.9)a			26(4)b	9100(95)b
IVITO	Srinivasa Rao	FP	2.7(1.5)a	0.6(0.9)a			36(5)a	9750(99)a
	LSD (0.05,28)		0.29	0.23			0.50	1.04
DTR	E16 – Sri Ummor	IPM	6.6(2.3)b	6.0(2.2)a	3.0(1.7)b	0.9(1.0)a		6533(81)a
FID		FP	9.3(2.9)a	7.4(2.6)a	3.5(1.8)a	0.6(1.0)a		5065(71)b
	LSD (0.05,28)		0.45	0.44	0.12	0.17		5.99
	Treatments							
	T1 = IPM		1.7(4.2)b	2.9(6.0)a	2.5(6.4)a	1.0(3.5)b	3(6)b	6880(50)a
T2 = FP			2.4(4.8)a	2.7(5.8)b	2.5(6.4)a	2.3(4.8)a	3(6)a	6513(49)b
	LSD (0.05,448)		0.16	0.20	0.17	0.31	0.16	0.34
	DAT							
	D1 = 36 DAT		2.0(4.6)ab	2.8(6.2)b	2.1(5.9)c	1.4(4.0)b		
	D2 = 50 DAT		2.2(4.6)a	2.8(6.0)b	3.1(7.1)b	1.4(3.9)b		
	D3 = 71 DAT		1.9(4.4)b	3.2(6.5)a	3.4(7.8)a		4(8)a	
	D4 = Pre har		2.1(4.5)ab				2(4)d	
	LSD (0.05,448)		0.22	0.28	0.24	0.44	0.23	

Figures in parenthesis are Atkinson's transformed values. Means in a column followed by same letter are not significantly different from each other Across locations, IPM plots showed significantly low stem borer, leaf folder, caseworm and BPH damage as compared to FP plots (**Figure 2.7.4**).

At Aduthurai, weed population at Active Tillering and Panicle Initiation stages was lower than farmers practice by 60.4 and 61.3% respectively. The weed dry biomass at Active Tillering and Panicle Initiation stages in IPM plots was lower than farmers practice by 17.9 and 43.4% respectively and contributed to the mean grain yield advantage of 16.1% in IPM adopted plots (**Table 2.7.22**). At Gangavathi, weed population at Active Tillering and Panicle Initiation stages in IPM plots was lower than farmers practice by 53.4 and 57.5%, respectively and the weed dry biomass was lower than farmers practice by 26.3 and 47.3%. The mean grain yield advantage of 10.7% was recorded in IPM adopted plots. At Mandya, weed population at Active Tillering and Panicle Initiation stages in IPM plots was lower than farmers practice by 80.4 and 68.2% respectively. The weed dry biomass at active tillering and panicle initiation stages in IPM plots was lower 89.7% respectively and contributed to the mean grain yield advantage of 16.9 %. At Puducherry, the weed population at Active Tillering and Panicle Initiation stages in IPM plots was lower than farmers practice by 48.8 and 52.7% respectively with lower weed biomass in IPM implemented fields by 43.2 and 52.3%. The mean grain yield advantage was14.3% in IPM adopted plots

Figure 2.7.4 Box plots of the incidence of dead hearts, gall midge, leaf folder, Caseworm, BPH and grain yield in IPM and FP plots across locations in Zone VII (Southern areas)

At Aduthurai, the trial was conducted for the management of false smut and bacterial blight. Adoption of IPM practices reduced the disease progress of false smut and bacterial blight. AUDPC values of bacterial blight disease was significantly low compared to farmer practices (L1 = IPM - 88; FP-288; L2 = IPM - 78; FP - 229; L3 = IPM - 105; FP - 295). In case of false smut disease, application

of IPM practices were effective at all the three locations, wherein the AUDPC values ranged from 22 to 27 in the IPM field as against 89 to 124 in the farmer practices.

	_	Weed popul	ation (No/m2)	Weed dry bio	mass (g/m2)
Location	Treatments	Active tillering	Panicle initiation	Active tillering	Panicle initiation
		stage	stage	stage	stage
ADUTHURAI	IPM	7.2(2.8)	8.6(3.0)	9.1	7.2
	FP	18.2(4.2)	22.2(4.7)	11.1	13.0
	Exp. mean	3.5	3.9	10.1	10.1
	CD(0.05)	1.1	0.4	2.8	3.2
GANGAVATHI	IPM	212.0(14.6)	233.4(15.3)	1548.2	1164.1
	FP	455.2(21.3)	549.6(23.4)	2101.0	2209.4
	Exp. mean	18.0	19.4	1824.6	1686.8
	CD(0.05)	0.8	0.8	281.4	254.2
MANDYA	IPM	3.4(1.9)	9.4(3.1)	1.6	7.4
	FP	17.4(4.2)	29.6(5.4)	7.8	72.0
	Exp. mean	3.1	4.3	4.7	39.7
	CD(0.05)	0.5	0.9	1.4	71.1
PUDUCHERRY	IPM	52.5(7.3)	36.7(6.1)	32.6	22.4
	FP	102.5(10.1)	77.5(8.8)	57.4	47.4
	Exp. mean	8.7	7.5	45.0	34.9
	CD(0.05)	0.3	0.1	1.5	2.9

 Table 2.7.22 Weed parameters in Zone VII (Southern areas), Kharif 2023

At Mandya, the IPM practices were evaluated only against leaf blast wherein the disease progress values reduced significantly as compared to farmer practices (L1= IPM-90, FP-234; L2 = IPM-94, FP-227; IPM-63, FP-165). At Rajendranagar, the trial was conducted for the management of neck blast in three locations and brown spot in one location. Application of IPM practices *viz.*, seed treatment with *Trichoderma viride* @ 10 g per kg seed, application of carbendazim 25% + mancozeb 50% WS @ 100 g per acre, spraying of carbendazim + mancozeb @ 500 g per acre at PI to booting stage effectively reduced the percentage disease severity of neck blast (L1 = IPM - 0.9%; FP-5.9%. L2 = IPM - 0.1%; FP -3.9%; L3 = IPM - 4.0%; FP-7.7%) and brown spot (L1 = IPM - 16.8%; FP - 52.2%) disease progress in the IPM practices as compared to the farmer practices adopted field (**Table 2.1.23**).

At Gangavathi, adoption of IPM practices reduced the disease progress of leaf blast (IPM-16, FP-30), Neck blast (IPM-16, FP-30), brown spot (IPM-434, FP-545) and false smut (IPM-6.4, FP-11.02%) as compared to the farmer practices. In case of bacterial blight and sheath blight diseases, though diseases progress was reduced, the difference in the AUDPC values between the IPM and FP practices was low as compared to other diseases (**Table 2.1.24**).

Grain yield in IPM plots was relatively high as compared to FP plots. However, high gross returns along with the low cost of cultivation in IPM practices resulted in a superior BC ratio (2.88) compared to FP plots (2.31), at all the locations (**Table 2.7.25**).

Table 2.7.2	23 AUDPC values	of rice diseases	at Aduthurai	, Mandya,	Rajendranag	gar, <i>Kharif '</i>	2023

		DS (%)				
Location	Treatment	Adu	ıthurai	Mandya	RNR	
Location	Treatment	FS	BB	LB	NB	BS
1.1	IPM	22	88	90	0.9	16.8
LI	FP	124	288	234	5.9	52.2
1.2	IPM	24	78	94	0.1	-
LZ	FP	89	229	227	3.9	-
1.2	IPM	27	105	63	4.0	-
LJ	FP	105	295	165	7.7	-

L= Location; IPM - Integrated Pest Management Practices; FP- Farmer Practices; AUDPC- Area under disease progress curve

Table 2.7.24 AUDPC values based on disease severity (%) of rice diseases at Gangavathi, Kharif 2023

Location	Treatment	AUDPC Values							
	Treatment	LB	NB	BB	SHB	BS	FS		
L1	IPM	16	84	431	1010	434	6.4		
	FP	30	111	501	1180	545	11.02		

L-Location; LB-Leaf Blast; NB- Neck Blast; BB- Bacterial blight; SHB- Sheath Blight; BS- Brown spot; FS- False smut; DI- Disease Incidence

Table 2.7.25 Returns and BC ratio in IPMs trial at Zone VII (Southern), Kharif 2023

Location	Name of the Farmer	Treatments	Yield (q/ ha)	Gross returns (Rs.)	Cost of cultivation (Rs.)	Net returns (Rs.)	BC ratio
	F1 - Sri Puttaswamy	IPM	51.72	134472	57750	76722	2.33
IVIIND	FT – SH FullaSwalliy	FP	45.72	118872	65500	53372	1.81
	E2 - Sri Annahasayaraju	IPM	57.96	139104	58375	80729	2.38
IVIIND	rz – Sii Alliabasavaraju	FP	51.56	123744	66625	57119	1.86
	E3 – Sri Chikkonu	IPM	73.36	209076	59250	149826	3.53
IVIIND		FP	60.96	173736	68500	105236	2.54
ADT	F4 = Sri Revathi F5 = Sri Ramakrishna	IPM	64.40	199640	84063	115577	2.37
,	F6 = Sri Sekhar	FP	54.00	167400	112250	55150	1.49
ррт	F7 = Sri Movva Krishnam	IPM	66.25	139125	58725	80400	2.37
DFI	Raju	FP	68.12	143052	65575	77477	2.18
DDT E8 - Cr	E9 - Sri Povina Vankajah	IPM	70.50	148050	62325	85725	2.38
DET	FO - SH DUYIHA VEHKAIAH	FP	72.25	151725	69975	81750	2.17
CNIV	E0 - Sri Hanumanthanna	IPM	62.69	156725	52062	104663	3.01
GIV	F9 – Sh Hanumanthappa	FP	59.78	149450	60496	88954	2.47
GNIV	F10 - Sri Basayarai	IPM	62.69	156725	52104	104621	3.01
GIV	1 10 – Sil Dasavalaj	FP	60.01	150025	60530	89495	2.48
	F11 = Sri E Ashok	IPM	78.29	195725	56628	139097	3.46
RNR	F12 = Sri V.Ravinder F13 = Sri E Narayana	FP	73.65	184125	64000	120125	2.88
МТП	F14 = Sri T Jogeswara	IPM	90.00	183600	56500	127100	3.25
INT U	Rao	FP	95.50	194820	64500	130320	3.02
МТП	E15 – Sri N Sriniyasa Pao	IPM	91.00	185640	57000	128640	3.26
INITO	F 15 - SITIN SIIIIIVASA NAU	FP	97.50	198900	64500	134400	3.08
PTR	F16 = Sri I Immer	IPM	65.33	182924	57575	125349	3.18
		FP	50.65	141820	81588	60232	1.74
		IPM	69.52				2.88
		FP	65.81				2.31

Price of Paddy: F1= Rs. 2600/q; F2 = Rs.2400/q; F3 = Rs.2850/q; F4, F5 & F6= Rs. 3100/q; F7 & F8 = Rs. 2100/q; F9 & F10 = Rs.2500/q; F11, F12, F13 = Rs. 2203/q; F14 & F15 = Rs.2040/q; F16 = Rs.2800/q

Species wise weed data was reported by 5 locations *viz.*, Mandya, Malan, Navasari, Titabar and Vadagaon. The weed flora reported in the test locations included **Grasses:** Cynodon dactylon, Dactylactenium aegyptium, Echinochloa colona, Echinochloa crusgalli, Hymenachne spp, Leptochloa chinensis, Panicum repens and Panicum tripheron. **Sedges:** Cyperus difformis, Cyperus iria, Cyperus rotundus, Cyperus procerus, Eleocharis spp, Scirpus spp and Fimbristylis miliacea. **BLW:** Ammania baccifera, Spilanthes acmella, Alternanthera spp, Alternanthera philxeroides, Bergia capensis, Eclipta alba, Eclipta prostrata, Ludwigia parviflora, Monochoria vaginalis, Glinus oppositifolius, Monochoria spp, Rotala densiflora, Sphenoclea zeylanica and Marsilea quadrifolia.

Overall, stem borer and leaf folder incidence was observed in all the zones while gall midge incidence was observed only at Zone IV, Zone V and Zone VII (**Table 2.7.26**). Whorl maggot incidence was observed in Zone IV and Zone V whereas caseworm incidence was noticed only in Zone VII. Similarly, Thrips incidence was recorded only in Zone V. Sucking pests like BPH incidence was observed in four zones, viz., Zone, I, Ii, III and VII while WBPH incidence was reported from two zones, Zone II and Zone VI.

Table 2.7	Table 2.7.26 Incidence of various insect pests in different treatments at various zones											
Zones	Treatments	% DH/WE	% SS	% LFDL	% WMDL	% CWDL	% THDL	BPH	WBPH	Yield (kg/ha)	BC ratio	
Zone I	IPM	20.6		21.6				6		3600	3.1	
	FP	36.4		12.9				7		1800	2.04	
Zone II	IPM	3.6		2.6				11	3	5755	3.68	
	FP	5.8		6.4				16	4	5378	3.27	
Zone III	IPM	1.8		2.9				6		5257	2.1	
	FP	2.4		5.7				6		4162	1.87	
Zone IV	IPM	5	3.2	5.5	2.7					4990	2.44	
	FP	15.3	8.2	9.1	3.7					3420	1.94	
Zone V	IPM	1.1	4.2	2.5	2.9		2.8			4580	4.64	
	FP	2.4	8.8	6.3	6.5		7.1			3825	3.29	
Zone VI	IPM	2.3		2.7					16	5085	2.49	
	FP	3.4		4.1					22	4201	2.28	
Zone VII	IPM	1.7	2.9	2.5		1		3		6952	2.88	
	FP	2.4	2.7	2.5		2.3		3		6581	2.31	

Integrated Pest Management special (IPMs) trial was conducted with zone-wise practices at 18 locations during Kharif 2023 and two locations during Rabi 2022-23 in 41 farmers' fields. In Zone I (Hilly areas), dead hearts caused by black beetle was predominant in both IPM (36.4%) and FP plots (20.6%) followed by leaf folder in FP plots (19.4%). Grasshopper damage was significantly high in FP plots (23.5%GHDL) as compared to IPM plots (19.6% GHDL). In Zone II (Northern areas), low incidence of stem borer, leaf folder, BPH, and WBPH was observed. However, leaf folder incidence (24.4%LFDL) was higher in FP plots at Kaul. In Zone III (Eastern areas), low incidence of stem borer, leaf folder and BPH was observed. In Zone IV (North Eastern areas), dead heart damage caused by stem borer was significantly low in IPM plot (5.0%DH) compared to FP plot (15.3% DH).

In Zone V (Central areas), a high incidence of gall midge was observed in FP plot (12.7% SS) compared to IPM plots (1.9% SS) at Jagdalpur. However, the incidence of stem borer, leaf folder, whorl maggot and thrips was low. In Zone VI (Western areas), WBPH incidence was low in IPM plots (14-17/hill) as compared to IPM plots (20-23/hill) at Nawagam. The incidence of stem borer and leaf folder was

low in both IPM and FP plots across locations. In Zone VII (Southern areas), stem borer incidence was high in FP plots at Aduthurai (30.0-42.3% DH) compared to IPM plots (12.5-13.3% DH). Similarly, gall midge and leaf folder incidence were high in FP plots and low in IPM plots in all three farmers' fields at Aduthurai. BPH incidence was significantly high in IPM plots as compared to FP plots in all the farmer's fields at Gangavathi and Maruteru.

. Weed population and weed dry biomass were significantly low in IPM plots as compared to FP plots across the locations. IPM implemented plots resulted in mean grain yield advantage of 49.1%, 4.4%, 25.5%, 20.7%, 18.8%,21.0% and 14.5%, respectively in Zone-I, II, III, IV, V, VI and VII over the farmer practices. In IPM adopted fields, the mean weed population reduction over the Zones ranged from 4.7% in Zone-I (Hills) to 80.5% in Zone-VII (Southern) at Active Tillering stage and from 9.7% in Zone-III (Eastern) to 69.2% in Zone-VI (Western) at Panicle Initiation stage. The dry weed biomass reported from 10 locations showed that at both Active Tillering and Panicle Initiation stages, it was significantly reduced by 18.2% in Zone III (Eastern) to 80.1% in Zone-VII (Southern); 13.3% in Zone III (Eastern) to 89.7% in Zone-VII (Southern) respectively.

Adoption of IPM practices effectively reduced the disease progression of leaf blast, neck blast, bacterial blight, sheath blight, and brown spot in Zone II (Northern areas), leaf blast, neck blast, bacterial blight and false smut in Zone III (Eastern areas). There was significant reduction in the disease development of leaf blast, neck blast and sheath blight in Zone V (central areas), sheath rot, sheath blight and brown spot in Zone VI (Western areas), bacterial blight, false smut, leaf blast and neck blast in Zone VII (Southern areas) due to the adoption of IPM practices

Grain yields were significantly high in IPM-implemented plots resulting in high gross returns. Overall, BC ratios of IPM plots were superior to that of FP mainly due to better yields, lower input costs, and better returns.

2.8 Population Dynamics of Inscect pests

a. Population dynamics of insect pests and natural enemies in rice ecosystem (PDPNE)

Knowledge on population dynamics of insect pests in relation to changes in weather parameters, crop phenology, growing season and cropping systems is vital for designing ecologically sound and economically viable pest management strategies. Further, knowledge on population dynamics of insect pests at a given location is also essential for implementing location specific IPM strategies and precision agriculture technologies. In India, rice is grown in different agro climatic zones under diverse cropping systems. The population dynamics of major as well as minor insect pests vary under such diverse cropping systems and geographical locations. Abiotic factors like temperature, humidity, sunshine hours, rainfall etc., and biotic factors like natural enemies such as parasitoids and predators significantly influence the population dynamics of insect pests. Concerted efforts are being made to monitor the population dynamics of insect pests at different locations across the country to understand the short and long-term changes in the pest scenario.

The weekly insect pest data was collected from 26 locations *viz.*, KHD (Zone I);PNT, NDL and LDN (Zone II), CHP, CHN, MSD, PUS and GGT (Zone III); TTB (Zone IV); RPR and JDP (Zone V); NVS and KJT (Zone VI); ADT, RNR, WGL, BPT, NLR, RGL, MTU, MNC, GNV, MND, CBT (Zone VII) along with the corresponding data on macro weather parameters. The weekly cumulative abundance of different insect pests, weekly averages of rainfall, maximum temperature (max. temp.), minimum temperature (min. temp.), morning relative humidity (RH mor), evening (RH eve) and sun shine hours (SSH) are computed from the daily data and are presented with reference to the standard weeks. All the observations in a zone are averaged and means are calculated. The summary of observations and general trends are presented here.

Zone 1:

In Zone-I at Khudwani, the incidence of leaf folder was recorded with highest leaf damage of 15.89 % during 31^{st} SMW, while the lowest leaf damage was recorded during 28^{th} SMW (6.08 %). Mean leaf folder incidence was 11.57 % over all the standard meteorological weeks (Fig 1). The correlation between the incidence of leaf folder damage and the weather parameters *viz.*, maximum temperature (-0.04), minimum temperature (-0.21), rainfall (-0.37) and evening relative humidity (-0.10) was negative and non-significant, whereas LFDL has no correlation with morning relative humidity (Fig 2). All the weather parameters have non-significant negative correlation on the incidence of leaf folder.

Fig 2. Correlation matrix - field incidence of leaf folder & weather parameters at Khudwani in Zone-I, *Kharif*, 2023

Zone II:

In Zone-II, several pests were recorded *viz.*, stem borer, leaf folder, whorl maggot, rice hispa and brown planthopper with their incidence starting from 32 SMW (33 SMW for BPH). The Peak dead heart incidence (12.0%) was recorded during 36th to 39th SMW and lowest incidence was recorded during 32nd week (1.00%). Leaf folder incidence was lowest (0.65% LFDL) during 42nd SMW and highest (9.22% LFDL) during 39th SMW. The incidence of whorl maggot was low (0.02% WMDL during 38th SMW) as compared to all other pests and its incidence was at peak during 34th SMW. Rice hispa and planthoppers were also recorded in this zone. The highest incidence of rice hispa *i.e.*, 4.08% HDL and planthoppers (5.44 hoppers per hill) was observed during 42nd and 39th SMW, respectively. Stem borer

white ears were recorded during the late season, *i.e.*, from 41st to 44th SMW, with maximum incidence (19.41%) during 44th SMW (Fig 3a, 3b and 3c). In Zone-II, the relationship between the field incidence of rice insect pests at weekly intervals and the weather parameters, *i.e.*, maximum temperature, minimum temperature, relative humidity morning, relative humidity evening and rainfall was estimated using Pearson correlation coefficients. There was a positive correlation between stem borer dead hearts (SBDH) and weather parameters such as maximum temperature (0.49), minimum temperature (0.33), evening relative humidity (0.29), sunshine hours (0.08) and evaporation (0.37), whereas morning relative humidity (-0.13) and rainfall (-0.12) are negatively correlated with SBDH. The leaf folder damage (LFDL) has positive correlation with the weather parameters like maximum temperature (0.44), minimum temperature (0.09), evening relative humidity (0.06), sunshine hours (0.29) and evaporation (0.22) whereas it has negative correlation with morning relative humidity (-0.07) and rainfall (-0.13). The whorl maggot incidence (WMDL) recoreded positive correlation with maximum temperature (0.32), minimum temperature (0.54), morning relative humidity (0.39), evening relative humidity (0.22), rainfall (0.14) and evaporation (0.48) except sunshine hours (-0.05) which recorded negative correlation. Hispa incidence is positively correlated with all the weather parameters like maximum temperature (0.06), minimum temperature (0.25), morning relative humidity (0.20), evening relative humidity (0.10), rainfall (0.06), sunshine hours (0.01) and evaporation (0.31). The brown planthopper has positive correlation with maximum temperature (0.27), sunshine hours (0.35) and evaporation (0.07) whereas, it has negative correlation with minimum temperature (-0.32), morning relative humidity (-0.39), evening relative humidity (-0.35) and rainfall (-0.18) (Fig 3).

Fig 3 a Population Dynamics of stem borer in rice

ecosystem (ZONE II)

Fig: 3 Correlation matrix - field incidence of stem borer, leaf folder, whorl maggot, hispa, BPH & weather parameters in Zone-II, *Kharif*, 2023

Zone III

In Zone – III, gall midge incidence was recorded during 36th to 47th SMW, with lowest silver shoots (0.20%) during 46th and 47th SMW and highest during 41st SMW with 7.90% SS. Stem borer incidence ranged from 0.05 and 5.70 % during 51st and 40th SMW respectively. Lowest incidence of leaf folder was recorded during 33rd SMW (0.10% LFDL) and highest (1.40 %) during 40th SMW. The whorl maggot was observed only for two weeks i.e., 38 and 39th with 1.50 and 8.70 % WMDL, respectively. White ear incidence was high during 48th SMW (5.91 % WE) and lowest *i.e.*, 0.65 % during 47th SMW (Fig 4 a and 4b). In Zone-III, the relation between the field incidence of rice insect pests, at weekly intervals along with the weather parameters, *i.e.*, maximum temperature, minimum temperature, relative humidity morning, relative humidity evening and rainfall was estimated using Pearson correlation coefficients. Gall midge silver shoots had shown significant positive correlation (0.53*) with minimum temperature and non-significant positive correlation with maximum temperature (0.43), morning relative humidity (0.09), evening relative humidity (0.42) and rainfall (0.38). Stem borer dead hearts (SBDH) showed highly significant positive correlation (0.60**) with minimum temperature, significant positive correlation with maximum temperature (0.48*) and nonsignificant positive correlation with evening relative humidity (0.14) and negative correlation with morning relative humidity (-0.12) and rainfall (0.06). Leaf folder damaged leaves (LFDL) showed significant positive correlation (0.53*) with minimum temperature, evening relative humidity (0.53*); positive correlation with maximum temperature (0.44), rainfall (0.08) and negative correlation with morning relative humidity (-0.16). Whorl maggot incidence has positive correlation with all the weather parameters such as maximum temperature (0.37), minimum temperature (0.39), morning relative humidity (0.46), evening relative humidity (0.49) and rainfall (0.04). The stem borer white ears recorded significant negative correlation with minimum temperature (-0.59*), morning relative humidity (-0.53*) and evening relative humidity (-0.55*) and showed non-significant negative correlation with maximum temperature (-0.43) and rainfall (-0.11) (Fig. 4).

Zone IV

In Zone-IV, the pest incidence was noticed from 31st SMW. Gall midge incidence was slightly more in this zone with 7.0 % SS (33rd SMW) and 6.40% DP (33rd and 34th SMW) and lowest damage (1.20 and 1.10 %) was observed during 45th and 44th SMW. Dead heart incidence ranged from 2.7% during 44th SMW and 6.50 %during 36th SMW. White ear damage (7.74%) was recorded only during the last SMW. Leaf folder incidence ranged from 0.80% (45th SMW) to 5.5% LFDL (33rd SMW). Whorl maggot damage ranged from 1.7% WMDL to 4.2 % during 38th and 33-34th SMW, respectively (Fig 5a & 5b). The pest incidence was correlated with weather

parameters in zone-IV. The gall midge damaged plants (GMDP) showed highly significant positive correlation (0.71**) with minimum temperature and positive correlation with maximum temperature (0.34), morning relative humidity (0.27)and rainfall (0.24) and negative correlation with evening relative humidity (-0.11) and sunshine hours (-0.22). In case of gall midge silver shoots, (GMSS) positive correlation was seen with minimum temperature (0.48), maximum temperature (0.25), morning relative humidity (0.14) and rainfall (0.15) and negative correlation was observed with evening relative humidity (-0.29) and sunshine hours (-0.18). Stem borer dead (SBDH) hearts showed positive correlation with minimum temperature (0.08), maximum temperature (0.17), morning relative humidity (0.33)and rainfall (0.24) whereas, negative correlation was observed with evening relative humidity (-0.24) and sunshine hours (-0.11). Leaf folder damage has significant positive correlation (0.60*) with minimum temperature, non-significant positive correlation with maximum temperature (0.31), morning relative humidity (0.22)and rainfall (0.06) and negative correlation with evening relative humidity (-0.16) and sunshine hours (-0.14). The whorl maggot incidence showed highly significant positive correlation (0.81***) with minimum temperature, significant positive correlation with maximum temperature (0.56*), and non-significant positive correlation with morning relative humidity (0.27) and rainfall (0.17), negative correlation with evening relative humidity (-0.17) and sunshine hours (-0.20) (Fig 5).

Fig: 5 Correlation matrix between field incidence of insect pests & weather parameters in Zone-IV, *Kharif,* 2023

Zone V

In Zone –V, the pest incidence was observed between 35th to 47th SMW. Highest incidence of gall midge (44% DP) was recorded in this zone during 37th SMW and lowest damage (10% DP) during 46th SMW. Silver shoots were high (16.8%) during 36th SMW and low (1.0%) during 46th SMW. Stem borer incidence was more (13.3% DH) during 44th week and low (1.4% DH) during 35th SMW. Leaf folder incidence ranged from 1.13% to 5.38 % LFDL during 45th and 47th SMW, respectively. High incidence of whorl maggot (10.09%) was seen during 38th SMW and low incidence (0.80%) during 45th SMW. Rice hispa incidence was high during 39th SMW (8.50 %) and low (0.20%) during 35th and 44th SMW.

Planthopper incidence ranged from 0.35 hoppers/hill during 47th SMW to 6.14 hoppers/hill during 44th SMW. White ears were recorded during 46th (2.02%) and 47th weeks (1.75%) (Fig 6a, 6b & 6c). The gall midge damaged plants (GMDP) showed significant positive correlation with maximum temperature (0.59*), minimum temperature (0.53*), non-significant positive correlation with rainfall (0.38) and negative correlation with morning (-0.47) and evening relative humidity (-0.37). Gall midge silver shots (GMSS) showed significant positive correlation with maximum temperature (0.58^*) , minimum temperature (0.58^*) and significant negative correlation with morning relative humidity (-0.55*) and non-significant positive correlation with rainfall (0.16) and negative correlation with evening relative humidity (-0.38). Stem borer dead hearts (SBDH) showed significant positive correlation with maximum temperature (0.59*) and negative correlation with minimum temperature (-0.33), rainfall (-0.27), morning relative humidity (-0.23) and evening relative humidity (-0.37). Leaf folder damage showed highly significant negative correlation (-0.78***) with morning relative humidity, significant negative correlation (-0.63*) with evening relative humidity, significant positive correlation with maximum temperature (0.64*), positive correlation with minimum temperature (0.36) and rainfall (0.08). Whorl maggot incidence showed significant positive correlation (0.59*) with minimum temperature, positive correlation with maximum temperature (0.47) and rainfall (0.06), and significant negative correlation with morning relative humidity (-0.56*), negative correlation with evening relative humidity (-0.38). Rice hispa showed highly significant positive correlation with minimum temperature (0.66**) and rainfall (0.91***), positive correlation with maximum temperature (0.14), morning (0.16) and evening relative humidity (0.25). Planthopper incidence showed positive correlation with maximum temperature (0.23), negative correlation with minimum temperature (-0.47), rainfall (-0.09), morning relative humidity (-0.04) and evening relative humidity (-0.20) (Fig 6).

Fig: 6 Correlation matrix - field incidence of insect pests & weather parameters in Zone-V, Kharif, 2023

Zone VI

In Zone-VI only stem borer and leaf folder incidence was recorded during 32nd SMW and 41st SMW, respectively. The dead heart incidence ranged from 0.80% (32nd SMW) to 6.90% (37th SMW). Leaf folder damage was high during 35th SMW (9.0%LFDL) and lowduring 44th and 45th SMW (1.80%). White ear damage was high 13.15% during 44th SMW and lowest (1.84%) during 41st SMW (Fig. 7a). Rice yellow stem borer dead hearts (SBDH) showed significant positive correlation with minimum temperature (0.54*) and evening relative humidity (0.61*), non-significant positive correlation with rainfall (0.07) and morning relative humidity (0.19), negative correlation with maximum temperature (-0.46). Leaf folder damage (LFDL) showed positive correlation with minimum temperature (0.47) and evening relative humidity (0.34) and negative correlation with maximum temperature (-0.17), rainfall (-0.30) and morning relative humidity (-0.17) (Fig 7)

Zone VII

In Zone -VII, gall midge incidence was high with plant damage ranging from 6.0 to 38.90 % during 49th SMW and 39th SMW, respectively. Similarly, silver shoots were also high (11.75%) during 39th SMW and lowest (0.30%) during second SMW. Stem borer damage ranged from 0.16% DH during 34th SMW to 8.48 %DH during 41st SMW. Leaf folder damage was highest during 43rd SMW (7.10%) and lowest during 34th, 2nd and 4th SMWs (0.40 % LFDL). Whorl maggot damage was at peak during 35th SMW (3.10%) and hispa damage during 38th SMW (2.30%) and their damage was lowest (0.1% DL) during 49th and 49-50 SMW, respectively. Planthoppers were high (27.7 hoppers/hill) during 47th SMW and lowest (0.20 hoppers/hill) during 33rd and 34th SMW. White ears were high (20.91%) during 51st SMW and were lowest during 49th SMW (2.73%) (Fig: 8a, 8b & 8c). Hispa incidence is positively correlated with Tmin and morning RH and negatively correlated with rainfall. Gall midge damaged plants showed positive correlation with maximum temperature (0.39), minimum temperature (0.35), sunshine hours (0.19), morning (0.33) and evening relative humidity (0.40) and negative correlation (-0.20) with rainfall. Gall midge silver shoots showed significant positive correlation with maximum temperature (0.49*), nonsignificant positive correlation with minimum temperature (0.37), sunshine hours (0.29), morning (0.32) and evening relative humidity (0.34) and negative correlation with (-0.32) with rainfall. Stem borer dead heart damage showed highly significant positive correlation with maximum temperature (0.62**), significant positive correlation with minimum temperature (0.51*) and positive correlation with sunshine hours (0.35), morning (0.20) and evening relative humidity (0.21) and showed negative correlation (-0.32) with rainfall. Leaf folder damage (LFDL) showed positive correlation with maximum temperature (0.06), minimum temperature (0.09), evening relative humidity (0.06) and negative correlation with morning relative humidity (-0.02), rainfall (0.08) and sunshine hours (0.29). Whorl maggot incidence showed highly significant positive correlation with maximum temperature (0.58**), morning relative humidity 0.59**) and evening relative humidity (0.58**); significant positive correlation with minimum temperature (0.53^*) ; positive correlation with sunshine hours (0.38); highly significant negative correlation with rainfall (-0.61**). Planthopper incidence showed negative correlation with maximum temperature (-0.40), minimum temperature (-0.31), sunshine hours (-0.34), morning relative humidity (-0.05) and evening relative humidity (-0.03) and positive correlation with rainfall (0.19). Stem borer white ears damage showed negative correlation with maximum temperature (-0.33), minimum temperature (-0.12), sunshine hours (-0.13), morning relative humidity (-0.15), evening relative humidity (-(0.32) and positive correlation (0.19) with rainfall (Fig. 8).

Summary:

Population dynamics of insect pests and natural enemies in rice ecosystem was carried out at 26 locations across the country to know the population dynamics of insect pests in relation to changes in weather parameters, crop phenology, growing season and cropping systems for designing ecologically sound and economically viable pest management strategies. Yellow stem borer, brown planthopper, leaf folder and gall midge were observed as major pests of rice across the centres during *kharif*, 2023. Rice hispa and whorl maggot were recorded as minor pests. Pest incidence varied across different zones, with factors like weather parameters and crop phenology exerting significant influences on their populations. In Zone III and Zone V, gall midge and stem borer incidence displayed a pronounced correlation with maximum and minimum temperatures. Furthermore, the study revealed intriguing patterns in pest damage across various regions. In Zone IV, peak incidence of gall midge occurred 33rd SMW whereas in Zone VII it happened during the 39th SMW. The comprehensive investigation conducted across multiple regions sheds light on the complex interactions between insect pests, natural enemies, and environmental variables within rice ecosystems.

b. Population Dynamics of Rice Insect Pests Assessed Through Light Trap Catches (LT)

The population dynamics of insect pests and their natural enemies vary with the geographic location and cropping system. Insect pest populations, during the crop season are always a function of abiotic and biotic factors. Besides biotic potential, to a large extent, abiotic factors like temperature, rainfall, relative humidity, sun shine hours, etc. and biotic factors such as predators, parasitoids, entomopathogenic organisms, etc. determine the abundance of insect pests in a crop ecosystem. Therefore, to design any effective location specific pest management strategies, knowledge of population dynamics of insect pests in relation to abiotic and biotic factors becomes vital. Since rice is grown in diverse agro-climatic zones in India, concerted efforts are being made under AICRIP to study the population dynamics of insect pests of rice at different locations across the country to understand short- and long-term changes in rice pest scenario.

During the year 2023, insect populations in rice ecosystems were recorded daily, throughout the year using light traps (Chinsurah/Robinson type) in 30 locations. These locations are namely; ADT, CHN, CHP, BRH, GNV, KRK, KJT, KUL, LDN, MLN, MND, MTU, MSD, MNC, KHD, NVS, NWG, NLR, PNT, PTB, RNR, RPR, CBT, JDP, TTB, CHT, RGL, GGT and WGL. Corresponding weather data on temperature, rainfall, relative humidity, sunshine hours, etc. were also collected. Weekly cumulative catches of insects and weekly averages of weather parameters were worked out on standard week (SW) basis. Highlights and trends of the data collected during the year 2023 are presented hereunder:

Yellow stem borer: Yellow stem borer was recorded in 27 locations, except in KHD and CHT. Annual cumulative catches were highest at MTU (22274), GGT (14009), followed by GNV (12838). Highest weekly catch was at MTU, GNV, and NLR in 16th, 17th and 38th SW respectively. In the previous year 2022, annual cumulative catches were highest at PTB (15728), followed by MTU (12200) and ADT (9776). Highest weekly catch was at ADT, PTB, and GNV in 34th, 52nd, and 17th SW respectively (Table 2.7.1 and Fig 2.7.1).

Fig. 2.7.1. Seasonal incidence of yellow stem borer (Catches>1000)

S. No.	Zone	Location	Annual cum.	Wkly cum.	SW	MaxT	MinT	RF	RH1	RH2	SSH
1	7	PNT	7932	1712	36	34.9	25.6	5.9	88.0	62.3	6.5
2	Zone-II North	LDN	122	39	38						
3	North	KUL	349	43	36	35.4	24.6	0.0	92.9	66.3	
4		CHP	1207	264	45	30.7	17.7	0.0	89.8	48.0	
5	Zone-III	CHN	8391	574	39	33.4	27.4	4.8	93.1	79.4	
6	East	GGT	14009	893	34						
7		MSD	6703	553	39						
8	Zone-III N-East	TTB	6837	638	35	35.0	24.6	7.8	92.3	68.7	5.3
9	Zone V	JDP	675	36	47	29.7	16.9	0.1			
10	Central	RPR	6577	371	17	35.9	21.2	4.5	73.4	39.9	8.3
11	7	KJT	169	15	25	35.6	26.4	0.1	78.9	53.1	0.0
12	Zone-vi Western	NWG	510	31	48	27.1	18.1	4.2	86.7	70.4	4.5
13	Wootom	NVS	1807	105	35	32.3	24.4	0.1	93.2	58.4	
14		CBT	2127	677	28	31.7	23.4	0.1	90.0	53.6	3.7
15		ADT	2368	149	12	34.9	23.6	3.5	94.3	62.3	7.7
16		KRK	759	59	4	30.0	20.6	0.1	93.3	64.4	6.2
17		GNV	12838	3169	17	33.0	23.8	0.1	72.9	51.7	
18	_	MND	3631	147	34	34.0	19.7	0.3	85.1	59.0	0.0
19	herr	BRH	156	16	38	30.8	21.7	21.8	92.3	77.9	
20	Sot	MNC	729	45	42	32.8	26.7	17.3	90.4	80.0	
21	ll>-€	PTB	12277	1895	52	33.0	22.4	0.0	94.8	66.9	
22	Zone	RGL	451	36	45	32.4	24.4	0.0	87.3	59.3	8.3
23		NLR	8500	2510	38	34.6	25.2	0.7	59.9	47.6	5.1
24		MTU	22274	3506	16	35.1	23.1	0.0	88.4	41.0	
25		RNR	3498	375	3	30.7	13.3	0.0	84.7	30.0	9.1
26		WGL	1231	87	16	39.2	24.0	0.0	64.6	27.9	9.3
27		JGT	1575	66	20	42.9	24.5	0.0	61.9	27.1	9.6

Table 2.7.1. Seasonal incidence of yellow stem borer based on light trap catches

Gall midge: Gall midge occurrence was observed in 9 locations. It was not recorded from Northern hill, Northern and Western Zones. Annual cumulative catches were highest in GNV (13330) followed by PTB (6849) and WGL (1424) and in terms of weekly cumulative catch, it was most active in GNV (2950) in 45th SW, followed by PTB (1234) in 41stSW and MTU (456) in 47th SW (Fig. 2.7.2 and Table 2.7.2). In the previous year (2022), annual cumulative catches were highest in GNV (14436) followed by MTU (9483) and WGL (3186) and in terms of weekly cumulative catch, it was most active in MTU (2201) in 50th SW, followed by GNV (1962) in 48th SW and WGL (765) in 45th SW.
S.No	Location	Annual cum.	Wkly cum.	SW	MaxT	MinT	RF	RH1	RH2	SSH
1	GNV	13330	2950	45	30.0	23.5	5.5	92.7	77.6	
2	CHN	190	9	42	32.2	22.5	0.0	91.9	64.0	
3	PTB	6849	1234	41	32.1	22.0	8.5	95.3	70.1	
4	MTU	5661	456	47	30.6	22.0	2.3	91.1	63.0	
5	NLR	1134	296	3	24.3	83.9	0.0	27.3	77.7	0.0
6	WGL	1424	389	44	31.5	20.9	0.0	88.6	63.6	5.3
7	JGT	149	18	40	33.3	22.5	20.0	92.7	56.9	8.0
8	CHP	1001	247	42	31.7	22.0	0.0	85.1	60.8	
9	BRH	305	54	32	30.6	21.7	7.8	95.0	79.6	

 Table 2.8.2. Seasonal incidence of gall midge based on light trap catches

Fig. 2.7.2. Seasonal incidenece of gall midge (Catches>1000)

Leaf folder: Leaf folder also was recorded at 27 locations across all the zones. Annual cumulative catches were highest at GGT (8297), MSD (6637), and NLR (4589). Whereas, weekly cumulative catches were highest in NLR (2675), GGT (887), and LDN (517) in 34th, 34th and 39th SW respectively. In the previous year 2022, it was most active in ADT, GNV, and KJT in terms of annual cumulative catches. Whereas, weekly cumulative catches were highest at ADT, MND, followed by PTB during 35th, 46th, and 5th SWs respectively (Table 2.7.3 and Fig. 2.7.3).

Fig. 2.7.3. Seasonal incidenece of leaf folder (Catches>1000)

S. No.	Zone	Location	Annual cum.	Wkly cum.	sw	MaxT	MinT	RF	RH1	RH2	SSH
1	Zone-I NW-Hills	MLN	369	51	17	30.0	11.3	0.0	76.1	72.0	
2		PNT	1107	245	38	32.7	24.9	89.6	70.0	3.8	6.2
3	Zone-II	LDN	4589	517	39						
4	North	CHT	508	58	47						
5		KUL	840	116	37						
6		CHP	165	23	42	31.7	22.0	0.0	85.1	60.8	
7	Zone-III	CHN	269	20	39	33.4	27.4	79.4	4.8	93.1	
8	East	GGT	8297	887	34	33.0	23.8	0.1	72.9	51.7	
9		MSD	6637	487	41						
10	Zone-III N-East	ттв	2197	228	40	34.6	23.9	0.0	92.3	66.0	6.8
11	Zone V-	JDP	1000	94	48	30.5	15.6	0.2	13.4	15.5	88.6
12	Central	RPR	663	187	41	34.4	23.3	0.0	92.3	45.4	8.0
13	7	KJT	126	25	17	37.8	24.5	0.0	83.7	41.4	9.0
14	Zone-VI Western	NWG	649	42	41	34.3	22.8	0.0	81.9	50.3	9.1
15	Western	NVS	242	27	36	32.0	24.2	8.1	92.1	70.0	
16		CBT	509	33	27	30.1	23.1	5.8	88.6	67.3	2.2
17		ADT	194	54	42	33.4	24.2	0.3	92.9	73.3	
18		GNV	548	68	47	30.0	20.9	0.0	88.3	67.9	
19		MND	1667	86	42	31.1	19.4	0.8	83.8	60.2	6.7
20	herr	BRH	216	27	39	30.1	22.0	21.1	94.3	85.3	
21	Sot	MNC	278	24	15	35.7	26.6	67.4	4.5	76.3	
22		PTB	385	78	12	34.3	21.8	43.7	0.0	90.0	
23	one	RGL	536	73	43	31.6	24.3	0.0	84.6	63.7	5.1
24		NLR	6323	2675	34	34.0	25.3	6.3	60.4	46.9	0.0
25		MTU	2715	265	43	30.9	23.7	2.3	79.4	64.6	
26		RNR	831	264	41	33.1	20.7	0.0	90.0	39.9	7.6
27		WGL	29	9	47	30.2	20.8	0.3	66.9	90.4	3.8

 Table 2.8.3. Seasonal incidence of leaf folder based on light trap catches

Brown planthopper: Brown planthopper was recorded in 20 locations. It was most abundant at RPR, PTB, and MTU on annual cumulative basis. Whereas, it was most active in 18th SW at RPR, in 45 SW at PNT and in 41stSW at MTU. In the previous year 2022, BPH was most abundant in MTU, PTB, and PNT on annual cumulative basis. Weekly cumulative catches were also highest in MTU followed by PNT, and WGL during 45th, 18th and 16th SW respectively.

Fig. 2.7.4. Seasonal incidence of brown planthopper (Catches>1000)

S. No.	Zone	Location	Annual cum.	Wkly cum.	SW	MaxT	MinT	RF	RH1	RH2	SSH
1		PNT	33565	17935	45	29.0	13.6	0.0	88.6	41.3	7.1
2	Zone-II North	LDN	619	190	40						
3		KUL	716	114	42						
4	Zono III Egot	CHP	9571	2353	46	30.0	18.7	0.0	87.8	48.8	
5	ZONE-III Edst	CHN	457	95	29	34.4	27.1	75.0	3.0	87.3	
6	Zone-III N-East	TTB	31	31	31	34.6	24.2	3.3	93.1	63.0	5.7
7	Zone V-Central	RPR	92772	47740	18	32.0	22.1	8.7	82.0	50.1	6.6
8		CBT	3877	128	37	32.1	23.9	1.0	82.7	52.7	5.2
9		ADT	1211	133	2	29.1	19.9	0.3	92.6	68.1	5.9
10		KRKL	46	19	11	32.6	23.5	0.0	93.3	59.3	8.6
11		GNV	8248	1411	43	31.5	19.0	0.0	61.9	53.1	
12		BRH	454	25	33	30.3	21.5	6.6	94.7	80.7	
13	≓	MNC	785	64	42	32.8	26.7	17.3	90.4	80.0	
14	ne-V	PTB	51203	6439	2	31.9	19.0	0.0	90.9	51.7	
15	Zo	RGL	3526	606	42	33.8	24.6	0.0	86.1	65.1	7.3
16		NLR	6560	565	52	22.1	27.0	3.6	77.5	66.1	0.0
17		MTU	46143	8497	41	33.3	27.7	74.4	67.9	0.0	
18		RNR	1494	970	44	31.1	21.1	0.0	82.9	50.3	3.9
19		WGL	7004	863	15	37.9	24.0	0.0	63.1	33.7	9.1
20		JGT	2635	155	22						

 Table 2.8.4. Seasonal incidence of brown planthopper based on light trap catches

Whitebacked planthopper: Whitebacked planthopper was recorded in 17 locations spread across all the zones. It was most abundant at MTU, RGL, and NLR in terms of annual cumulative catches. It was most active in 46th, 45th and 45thSW at MTU, RGL and WGL respetively. In the previous year 2022, highest annual cumulative catches were recorded at MTU, NLR, and GNV. Whereas, white backed planthopper was most active during 45th, 26th, and 35th SW at MTU, NLR and KUL respectively.

				-			-	-			
S. No.	Zone	Location	Annual cum.	Wkly cum.	SW	MaxT	MinT	RF	RH1	RH2	SSH
1	Zana II Narth	LDN	181	26	28						
2		KUL	143	23	41						
3	Zono III East	CHP	852	284	44	30.7	19.9	0.0	70.8	56.2	
4	Zone-III East	CHN	5696	898	45	30.2	18.8	0.0	95.3	57.6	
5	Zone-III N-East	TTB	27	27	31	34.6	24.2	3.3	93.1	63.0	5.7
6	Zone V-Central	JDP	663	187	41	32.7	19.5	0.0	91.6	51.4	
7	Zone-VI Western	NWG	1974	108	45	35.4	18.8	0.0	71.1	31.0	8.2
8		CBT	3380	119	36	32.4	23.7	0.2	81.4	54.0	3.8
9		KRK	25	6	50	31.1	23.6	1.7	90.6	74.3	6.5
10		GNV	3757	577	43	31.5	19.0	0.0	61.9	53.1	
11	Ē	MNC	427	30	47	33.4	27.5	4.6	89.7	81.0	
12	other	RGL	7445	1906	45	32.4	24.4	0.0	87.3	59.3	8.3
13	Sc.	NLR	6046	392	52	22.1	27.0	0.0	77.5	66.1	3.6
14		MTU	9362	2456	46	30.9	22.6	0.0	88.1	68.1	
15	Cone	WGL	3313	1056	45	31.5	21.6	0.0	90.4	61.7	5.1

 Table 2.8.5. Seasonal incidence of whitebacked planthopper based on light trap catches

Fig. 2.7.5 Seasonal incidenece of white backed planthopper (Catches>1000)

Green leafhopper: Green leafhopper was recorded from 26 locations. GLH was predominant at JDP, PTB, and GGT in terms of annual cumulative catches. It was most active in 44th, 42nd and 45th SW at JDP, MTU and PTB respectively. In the previous year 2022, highest annual cumulative population was found at JDP, MTU, and MSD. It was most active during 44th, 46th and 37th SW at JDP, MTU and TTB respectively.

ICAR-IIRR Annual Progress Report 2023, Vol. 2 – Entomology

Fig. 2.7.6. Seasonal incience of green leafhopper (Catches>3000)

S. No.	Zone	Location	Annual cum.	Wkly cum.	SW	MaxT	MinT	RF	RH1	RH2	SSH
1	Zone-I NW-Hills	MLN	297	48	20	29.7	12.4	14.8	74.4	69.7	
2	Zana II North	PNT	2127	703	44	30.7	15.2	0.0	86.4	39.7	8.4
3	Zone-ii North	KUL	884	220	27						
4		CHP	3435	832	43	31.0	18.9	0.0	86.0	51.8	
5	Zana III Faat	CHN	1220	95	45	30.2	18.8	0.0	95.3	57.6	
6	Zone-III East	GGT	32579	2731	44						
7		MSD	10049	627	40						
8	Zone-III N-East	TTB	19071	2308	37	32.8	23.4	4.5	93.3	69.7	1.7
9	Zana V Cantral	JDP	84999	9885	44	31.2	16.2	1.8	14.4	16.1	85.9
10	Zone v-Gentral	RPR	398	65	47	30.6	17.4	0.0	84.0	42.0	6.5
11	Zana VII Waatarn	KJT	3456	307	34	29.7	24.4	21.6	90.9	82.4	1.2
12	Zone-vi western	NVS	49	10	27	30.8	24.9	36.3	93.7	83.8	
13		CBT	3776	130	44	30.9	23.2	13.5	89.3	57.0	3.9
14		ADT	1880	149	2	29.1	19.9	0.3	92.6	68.1	5.9
15		KRK	609	72	49	32.2	25.3	3.0	94.1	77.1	4.5
16		GNV	2592	208	47	30.0	20.9	0.0	88.3	67.9	
17		MND	1333	72	38	30.3	20.4	1.6	85.7	57.1	6.9
18	nern	BRH	1574	174	32	30.6	21.7	7.8	95.0	79.6	
19	Soth	MNC	990	57	11	35.5	25.1	1.1	83.6	67.6	
20	-e	PTB	53545	4950	45	32.6	21.7	25.7	95.3	71.1	
21	Zone	RGL	195	34	44	31.5	23.3	0.5	88.4	64.3	6.8
22		NLR	1077	262	2	23.0	85.1	0.0	27.1	76.4	0.0
23		MTU	19985	7096	42	32.4	25.1	0.0	71.1	67.3	
24		RNR	626	145	39	30.2	22.6	6.5	93.4	68.1	4.5
25		WGL	8848	1778	16	39.2	24.0	0.0	64.6	27.9	9.3
26		JGT	2570	82	42	33.8	21.0	0.0	93.4	52.3	7.4

Table 2.8.6. Seasonal incidence of green leafhopper based on light trap catches

Case worm: Case worm was recorded in 13 locations spread across all the zones except Northern zone. It was highest in terms of annual cumulative catches and was most active in 43rd, 35th and 34th SW at GGT, MSD, and TTB. In the previous year 2022, it was most active in MSD, GGT, and GNV (Table 2.7.7 and Fig. 2.7.7).

S. No.	Zone	Location	Annual cum.	Wkly Cum.	SW	MaxT	MinT	RF	RH1	RH2	SSH
1	Zone-I	KHD	422	124	15	6	2	1	1	6	
2	NW-Hills	MLN	12	6	12	30.3	15.4	12.2	76.3	72.3	
3	7	CHP	101	16	45	30.7	17.7	0.0	89.8	48.0	
4	Zone-III Fast	GGT	16428	1703	43						
5	Lusi	MSD	9119	609	34						
6	Zone-III N-East	ТТВ	1963	710	35	35.0	24.6	7.8	92.3	68.7	5.3
7	Zone V- Central	RPR	382	86	41	34.4	23.3	0.0	92.3	45.4	8.0
8	Zone-VI	KJT	1	1	32	30.1	25.0	8.7	91.1	76.3	1.4
9	Western	NVS	1289	68	47	34.1	18.7	0.0	82.3	39.0	
10		CBT	5	3	6	32.3	18.2	0.0	80.6	22.7	8.4
11	iern	GNV	664	39	41	33.2	22.7	0.0	69.0	56.6	
12	Zone Soth	BRH	92	9	43	34.2	22.7	0.0	91.4	62.3	
13	17	RNR	62	14	9	33.8	14.7	0.0	76.3	19.4	8.7

Table 2.8.7. Seasonal incidence of caseworm based on light trap catches

Fig. 2.7.7 Seasonal incidence of case worm (Catches>1000

Gundhi bug: Rice gundhi bug was recorded at five locations: PTB, TTB, PNT, RPR, and KJT. It was most abundant at PTB, TTB, and PNT on annual cumulative basis and was most active during 40th, 39th and 40th SW respectively. In the previous year 2022, it was most abundant in PTB followed by TTB and NVS (Table 2.7.8 and Fig. 2.7.8).

ICAR-IIRR Annual Progress Report 2023, Vol. 2 – Entomology

S.No	Location	Annual cum.	Wkly cum.	SW	MaxT	MinT	RF	RH1	RH2	SSH
1	PTB	5910	419	40	30.8	21.5	16.7	95.9	78.6	
2	TTB	1604	282	39	32.1	23.6	1.8	90.6	68.6	3.2
4	PNT	1050	332	40	33.8	23.0	0.0	88.9	51.4	9.5
6	RPR	351	216	15	38.9	23.7	0.0	59.7	20.7	6.9
5	KJT	278	48	38	29.7	24.8	15.8	95.4	80.1	2.8

 Table 2.8.8. Seasonal incidence of gundhi bug based on light trap catches

Fig. 2.7.8 Seasonal incidence of gundhi bug

Mirid bugs: It was reported from four locations: PTB, MTU, GNV, and NVS. It was most active in 3rd, 42nd, 45th and 31stSW. In the previous year 2022, it was most abundant in KJT, LDN, MND followed by MTU. Highest weekly catches were recorded at LDN and MND followed by MTU in 42nd and 43rdSWs respectively (Table 2.7.9 and Fig. 2.7.9).

S.No	Location	Annual cumulative	Weekly cumulative high	SW	MaxT	MinT	RF	RH1	RH2
1	PTB	87885	9351	3	31.8	18.7	0.0	91.4	59.4
2	MTU	15299	5387	42	32.4	25.1	0.0	71.1	67.3
3	GNV	4577	370	45	30.0	23.5	5.5	92.7	77.6
4	NVS	86	9	31	29.7	25.2	5.9	90.6	87.5

Table 2.8.9. Seasonal incidence of mirid bug based on light trap catches

ICAR-IIRR Annual Progress Report 2023, Vol. 2 – Entomology

Fig. 2.7.9 Seasonal incidence of mirid bugs

Other Insect Pests:

White stem borer was reported from TTB, PTB, WGL and MLN. Pink stem borer was also reported from LDN, KUL, RNR, and RPR. Black bug was reported from five locations: MLN, ADT, TTB, MTU, and MNC. Zigzag leafhopper was found in three locations: MTU, NVS, CHN and JDP. White grub was a concern at KHD and CHT. Grasshoppers were regular pests at CHT.

Overall, the light trap data revealed that yellow stem borer, leaf folder, and hoppers continued to be the most important pests in terms of numbers as well as spread across the locations. Gall midge continues to be an endemic pest. However, case worm, and gundhi bug showed an increase in the spread and intensity of incidence posing concern for future. Patterns in seasonal incidence and population build up based on light trap data indicates that the key pests are reaching their peak levels in the months of October and November in the kharif season. Therefore, strategies are to be timed accordingly for the effective management of insect pests in rice.

Rabi 2022-23

SUMMARY

Stem borer screening Trial (SBST): Evaluation of 55 entries in 6 locations in 8 valid tests against stem borer damage at two phases of crop growth identified, 5 entries as promising in 2-3 of the 8 valid tests. RP 6505-82 was promising in 3 tests for dead heart damage. CR Dhan 308*, RP-6112-SM-92-R-293-1-1-3-3 and RP-6112-SM-92-R-293-2-2-4-4(a) were promising in 2 tests each. NSR 114 (RP BIO 4919)* and BK 49-76* were promising at both dead heart and white ear damages in 3 and 2 tests, respectively

Multiple Resistance screening Trial (MRST) In this trial, 40 entries were evaluated against two leaf damaging insect pests *viz.*, whorl maggot at Rajendranagar and grasshoppers at Khudwani. None of them were promising.

National Screening Nursery (Boro): The trial was constituted with 52 entries (41 entries AVT and IVT Boro along with 10 insect checks) and evaluated at 7 locations against 7 insect pests. RP 6726-JB 19247-1-1-1 was promising in only one test at Coimbatore against BPH with a <DS 3.0. CR 4379-6-2-1-1-1 and CR 4121-16-3-1-2 recorded <5% WE damage at Pattambi.

Optimum pest control trial was conducted at IIRR and Pattambi. Stem borer damage at both the locations, leaf folder and whorl maggot damage only at Pattambi was recorded. W1263 had lower dead heart damage at both the locations. At Pattambi, insecticide sprays had significantly reduced the insect damage (%DH, %WMDL and %LFDL) at vegetative phase and mirid bug population in the protected treatments as compared to unprotected treatments.

Rabi 2022-23

2.1 Host Plant Resistance Trials

i) Stem borer Screening trial (SBST)

To identify novel sources of tolerance to stem borer damage in rice, **Stem borer Screening trial** (SBST) was conducted during rabi 2022-23 with 55 entries which included 37 nominations from IIRR (one BPT mutant and its derivatives, ILs derived from *O. nivara; O. rufipogon* and *O. glaberrima*); 10 nominations from IIRR-PTB; one each from Cuttack, Jagtial, and Rudrur; along with the checks, PB1, TN1, W 1263, Sasyasree and TKM6. Of these, 15 entries were under retesting. The entries were evaluated at 6 locations *viz.*, IIRR, CBT, Gerua, CHN, PTB, and MTU. For effective screening, two staggered sowings were taken up at Chinsurah and IIRR Rajendranagar. At IIRR and CBT, infestation was augmented through pinning of egg masses. At each location, observations were recorded on dead heart damage in vegetative phase and white ear damage in reproductive phase, grain yield in the infested plant and the larval survival in the stubbles at harvest. The results of the evaluation from the valid tests are discussed below.

Dead heart damage: The dead heart damage in the trial varied from 0.0 to 60.0% with an average damage of 18.6% DH across 5 locations in 5 valid tests. Evaluation of entries for dead heart damage helped in identification of five entries. RP 6505-82 was promising in 3 valid tests of the 5 valid tests with <20% dead hearts. CR Dhan 308*, NSR 114 (RP BIO 4919)*, RP-6112-SM-92-R-293-1-1-3-3 and RP-6112-SM-92-R-293-2-2-4-4(a) were promising in 2 tests each.

		CHN1	GER	IIRR	PTB	CBT	SBDH	IIRR	MTU	PTB	SBWF	Overall
S. No.	Entries	57DAT	25DAT	18DAT	30DAT	73DAT	NPT	91DAT	90DAT	85DAT	NPT	SB NPT
		%DH	%DH	%DH	%DH	%DH	5	%WE		%WE	3	8
8	RP 6505-82	4.8	6.3	21.9	16.0	11.8	3	18.2	2.3	35.1	0	3
16	NSR 114 (RP BIO 4919)*	16.9	4.1	14.2	42.8	4.5	2	21.5	0.0	29.2	1	3
11	BK 49-76*	0.0	20.4	12.3	57.6	21.0	1	23.3	0.0	32.6	1	2
26	RP-6112-SM-92- R-293-1-1-3-3	10.4	6.5	21.3	14.6	13.2	2	14.9	27.7	49.7	0	2
28	RP-6112-SM-92- R-293-2-2-4-4(a)	11.1	9.4	14.1	38.8	3.0	2	18.4	17.0	40.7	0	2
1	CR Dhan 308*	8.9	8.8	18.9	16.8	17.5	2	24.7	32.6	30.7	0	2
Tota	l Count	54	52	55	55	55		48	55	45		
Max.	damage in the trial	33.9	22.6	43.5	60.0	31.5		49.6	40.3	61.2		
Min.	damage in the trial	0.0	4.1	8.5	14.6	0.0		5.0	0.0	20.8		
Ave.	damage in the trial	12.7	12.3	21.3	35.5	12.6		18.1	13.2	39.3		
Dam	age in TN1	11.7	0.0	22.5	39.8	14.2		34.3	11.0	35.3		
Prom	nising level	5	10	10	20	5		5	5	5		
No. c entri	of Promising es	5	16	1	5	8		0	11	0		

Table 2.1.1 Reaction of most promising cultures to stem borer in SBST, rabi 2022-23

• Entries under retesting; SBDH & SBWE from RNR, SBWE from CBT was not included due to low pest pressure.

White ear damage: The white ear damage across 3 locations in 3 valid tests varied from 0.0 to 61.2% WE with a mean of 23.5% WE in the trial. Evaluation of entries identified, NSR 114 (RP BIO 4919)* and BK 49-76* as promising at one location as they recorded nil damage. This could be an escape as in the other two locations they had high damage. Mean no. of larvae in the stubbles varied from 0-2.3 larvae/ hill.

Overall reaction: Evaluation of 55 entries in 6 locations in 8 valid tests against stem borer damage at two phase of crop growth identified, 5 entries as promising in 2-3 tests of the 8 valid tests. RP 6505-82 was promising in 3 tests for dead heart damage. CR Dhan 308*, RP-6112-SM-92-R-293-1-1-3-3 and RP-6112-SM-92-R-293-2-2-4-4(a) were promising in 2 tests each. NSR 114 (RP BIO 4919)* and BK 49-76* were promising at both dead heart and white ear damages in 3 and 2 tests, respectively **(Table 2.1.1)**.

ii) Multiple resistance screening trial (MRST)

In this trial, 40 entries were evaluated against two insect pests *viz.*, whorl maggot at Rajendranagar and grasshoppers at Khudwani. The average damage was 9.1% WMDL and 16.1 % grasshopper damaged leaves. None of them were promising with <5 % DL. Data on stem borer damage from IRR, Rajendranagar was not considered as the severity was low despite taking up two staggered sowings.

iii) National screening nurseries - BORO 2022-23

The trial was constituted with 52 entries (42 entries from AVT and IVT Boro trials along with 10 insect checks) and evaluated at 7 locations against 7 insect pests. Data from Chinsurah and Gerua for SBDH, SBWE & LF; from Titabar for GB damage were not included due to want of sufficient pest pressure. The results of the valid tests are discussed pest wise:

Brown planthopper: RP 6726-JB 19247-1-1-1 was promising in only one test at Coimbatore of the two greenhouse tests (IIRR and CBT) at seedling stage.

Whitebacked planthopper: None of the entries were promising in one greenhouse test at Coimbatore.

Planthoppers: None of the entries was promising in the field reaction at Maruteru.

Gall midge: None of the entries was promising.

Stem borer: None of the entries was promising in two valid field reactions at Pattambi and Titabar for dead heart damage. CR 4379-6-2-1-1-1 and CR 4121-16-3-1-2 recorded <5% WE damage at Pattambi.

Whorl maggot: At Pattambi, 10 entries had a <5 % DL at 50 DAT.

2.2. Optimum Pest Control Trial (OPCT)

The trial was constituted to evaluate the performance of the identified multiple pest resistant rice cultures under protected and unprotected conditions against the pest damages in a location. The trial was conducted at 2 locations *viz.*, IIRR and Pattambi. Nine insect pest resistant cultures *viz.*, V1-CUL M9, V2-CR 3006-8-2, V3-CR Dhan 317, V4- Akshaydhan PYL, RP5587-273-1-B-B-B, KMR 3, Suraksha, W1263, RP2068 -18-3-5 along with the susceptible check TN1 were raised in 3 replications in a split plot design with main treatments being protected and unprotected conditions and varieties as sub-treatments at IIRR. At Pattambi, only 6 varieties were tested. Observations on pest incidence were recorded along with the grain yield. Insecticide treatments were taken up based on the intensity of the damage. This is the second season where trial was conducted. The general information pertaining to the trial is given in **(Table 2.2.1).** and results are discussed location wise.

IIRR: Stem borer dead hearts and white ears damage was recorded at 82 DAT. W1263, RP 2068-18-3-5, KMR3 had significantly lower dead heart damage as compared to other test entries. No significant difference in white ear damage was observed between protected and unprotected treatments as there was an unanticipated infestation late in the season and the damage varied from 11.88 to 15.74 % WE among the varieties tested. CR 3006-8-2 and Suraksha escaped the white ear damage due to early maturity but CR 3006-8-2 had significantly higher grain yield followed by CR Dhan 317 as compared to other varieties (**Table 2.2.2** & 2.2.3).

Pattambi: Observations on dead hearts, white ears, whorl maggot damaged leaves and leaf folder damaged leaves were recorded in this trial. Insecticide was applied at 15 DAT, 45 DAT, and 65 DAT and observations were recorded before and after the treatment. Insecticidal treatment had significantly reduced whorl maggot damage at 50 DAT; leaf folder damage at 70 DAT (**Table 2.2.2**) and the dead heart damage at 20, 50 and 70 DAT (**Table 2.2.3**) and white ear damage (**Table 2.2.4**). Among the varieties, W1263 at 20 DAT; KMR3 and RP 2068-18-3-5 at 50 DAT had significantly lower dead heart damage as compared to other varieties. Grain yields were at par in RP 2068-18-3-5, RP5587-273-1-B-B-B and W1263 and significantly higher as compared to other varieties. Observations on spiders/ 10 hills (1.54 \pm 0.13 to 3.62 \pm 0.12), dragon flies/10 hills (1.7 to 2.0 /10 hills) and mirid bugs/10 hills were recorded along with pest incidence. It was observed that mirid bugs (8.41 \pm 0.52 Nos) were lower in protected treatments as compared to unprotected treatments (14.04 \pm 4.32 Nos) at 40 DAT. Further sprays reduced the population.

Optimum pest control trial was conducted at IIRR and Pattambi. Stem borer damage at both the locations, leaf folder and whorl maggot damage only at Pattambi was recorded. W1263 had lower dead heart damage at both the locations. At Pattambi insecticide sprays had significantly reduced the insect damages (%DH, %WMDL and %LFDL) at vegetative phase and mirid bug population in the protected treatments as compared to unprotected treatments.

Location	Common name	Time of application	Observations recorded
IIRR D/S 30.12.2022 D/P 13.02.2023	Cartap hydrochloride	56 DAT	SBDH, SBWE
Pattambi D/S 14.11.2022	Cartap hydrochloride 4%	15 DAT, 45 DAT and 65 DAT	SBDH, SBWE, LF, WM, spiders, damsel flies & Coccinellids
D/P 05.12.2022			

Table 2.2.1 General information pertaining to OPCT trial, rabi 2022-23

Table2.2.2 Reaction of resistant cultures to leaf damaging pests in OPCT, rabi 2022-23

	PTB	PTB	PTB	PTB	PTB	PTB	PTB	PTB
Treatment	15DAT	20DAT	45DAT	50DAT	65DAT	70DAT	65DAT	70DAT
	BT	AT	BT	AT	BT	AT	BT	AT
	%WMDL	%WMDL	%WMDL	%WMDL	%WMDL	%WMDL	%LFDL	%LFDL
Akshayadhan PYL	5.19(2.33)	7.74(2.78)	12.44(3.52)	11.60(3.44)	5.64(2.47)	7.12(2.70)	10.86(3.35)b	14.76(3.72)b
RP5587-273-1-B-B-B	4.08(2.11)	5.47(2.38)	12.92(3.65)	11.28(3.36)	5.58(2.46)	7.08(2.69)	10.65(3.32)b	13.67(3.58)b
KMR3	3.47(1.96)	7.77(2.80)	11.74(3.45)	11.77(3.46)	5.79(2.48)	7.05(2.67)	10.09(3.22)b	14.02(3.62)b
W1263	3.78(2.06)	7.22(2.71)	8.79(3.02)	9.77(3.14)	5.85(2.48)	7.84(2.79)	10.75(3.31)b	14.44(3.72)b
RP2068-18-3-5	5.06(2.33)	5.82(2.35)	12.74(3.57)	12.55(3.57)	5.86(2.49)	7.26(2.74)	11.13(3.38)b	14.69(3.72)b
TN1	6.49(2.55)	7.90(2.75)	13.36(3.65)	14.60(3.80)	8.66(2.97)	8.85(3.01)	13.92(3.76)a	17.70(4.17)a
CD(0.05)	ns	ns	ns	ns	ns	ns	0.24	0.23
CV(%)	17.95	22.01	18.71	12.82	14.87	8.39	7.04	6.05
Main treatemnts								
Protected	4.67(2.22)	4.56(2.18)	10.96(3.33)	9.13(3.05)	6.88(2.66)	4.59(2.23)	8.89(3.05)	6.80(2.67)
UnProtected	4.69(2.23)	9.41(3.07)	13.04(3.62)	14.73(3.88)	5.57(2.45)	10.47(3.30)	13.57(3.73)	22.96(4.84)
CD(0.05)	ns	ns	ns	0.66	ns	0.68	0.67	0.47
CV(%)	23.45	37.73	11.34	20.63	22.3	26.9	21.36	13.72
Interaction								
Protection and Variety	ns	ns	ns	ns	ns	ns	ns	ns
Variety and Protection	ns	ns	ns	ns	ns	ns	ns	ns
Experimental Mean	2.22	2.63	3.48	3.46	2.56	2.76	3.39	3.76

CUL M9, CR 3006-8-2, CR Dhan 317 and Suraksha were not tested; Figures in parentheses are square root transformed values.

Table 2.2.3 Reaction of resistant cultures to dead here	art damage by stem borer in OPCT, rabi 2022-23
---	--

	IIRR	IIRR	PTB	PTB	PTB	PTB	PTB	PTB
Treatment	82DAT	92DAT	15DAT	20DAT	45DAT	50DAT	65DAT	70DAT
	BT	BT	BT	AT	BT	AT	BT	AT
	DH	DH	DH	DH	DH	DH	DH	DH
CUL M9	6.58(2.63)a	8.09(2.77)b	NT	NT	NT	NT	NT	NT
CR 3006-8-2	2.34(1.66)b	9.36(2.95)b	NT	NT	NT	NT	NT	NT
CR Dhan 317	4.64(2.22)ab	8.51(2.91)b	NT	NT	NT	NT	NT	NT
Akshayadhan PYL	4.78(2.28)a	8.17(2.85)b	20.38(26.75)b	18.17(23.76)b	28.30(31.58)	14.30(19.83)b	12.32(3.52)	13.31(3.60)b
RP5587-273-1-B-B-B	4.15(2.06)ab	10.17(3.25)ab	18.72(25.38)bc	11.76(19.56)bc	19.70(25.93)	13.98(21.24)b	11.81(3.48)	11.88(3.43)b
KMR3	4.80(2.28)a	9.43(3.09)b	20.96(27.10)b	12.78(20.39)bc	23.04(28.41)	9.45(15.12)c	11.93(3.42)	13.54(3.62)b
Suraksha	3.81(2.06)ab	6.27(2.57)b	NT	NT	NT	NT	NT	NT
W1263	1.85(1.40)c	9.66(3.14)b	14.69(22.49)c	8.29(16.20)c	24.89(29.18)	13.09(20.53)b	10.58(3.22)	13.97(3.68)b
RP2068-18-3-5	5.86(2.50)a	8.53(2.97)b	16.10(23.34)bc	13.29(20.58)bc	26.32(30.30)	11.68(19.33)bc	11.39(3.42)	12.46(3.50)b
TN1	4.82(2.23)ab	15.16(3.93)a	27.46(31.34)a	35.21(35.46)a	24.91(29.37)	22.54(27.72)a	15.01(3.87)	17.68(4.22)a
CD(0.05)	0.6	0.7	3.86	5.7	ns	4.7	ns	0.31
CV(%)	24.1	19.86	14.49	24.65	26.43	22.32	14.9	8.31
Main treatments								
Protected	4.24(2.13)	8.62(2.89)	18.80(25.40)	9.29(17.39)	20.65(26.62)	6.89(13.99)	9.82(3.13)	7.90(2.87)
UnProtected	4.49(2.13)	10.05(3.19)	20.63(26.74)	23.87(27.93)	28.40(31.64)	21.46(27.27)	14.52(3.85)	19.71(4.48)
CD(0.05)	ns	ns	ns	9.76	ns	4.67	0.7	0.35
CV(%)	26.94	16.71	14.57	46.91	35.42	24.66	21.95	10.34
Interaction								
Protection and Variety	ns	ns	ns	8.07	ns	ns	ns	ns
Variety and Protection	ns	ns	ns	10.61	ns	ns	ns	ns
Experimental Mean	2.13	3.04	26.07	22.66	29.13	20.63	3.49	3.67

Figures in parentheses are square root transformed values. Means followed by same letter are not significantly different from eacj other at P< 0.05

	IIRR	PTB	lirr	PTB
Treatment	113DT	%WE	Grain Yield	Grain yield
	WE(%)	WE (%)	g/hill	g/hill
CUL M9	NT	NT	NT	NT
CR 3006-8-2	Escape	NT	6505.62a	NT
CR Dhan 317	12.87(3.60)	NT	5722.85b	NT
Akshayadhan PYL	14.65(3.66)	14.62(20.86)	5426.97abc	2245.83b
RP5587-273-1-B-B-B	11.88(3.40)	12.70(19.66)	5528.09abc	2845.83a
KMR3	16.34(3.98)	15.17(21.89)	4441.95bc	2804.17a
Suraksha	Escape	NT	4588.01bc	NT
W1263	13.26(3.56)	14.49(21.07)	4498.13bc	2762.5a
RP2068-18-3-5	13.02(3.59)	14.52(20.69)	3037.45d	2966.67a
TN1	15.74(3.89)	18.78(24.81)	4872.66bc	2137.5c
CD(0.05)	ns	ns	1222.7	492.3
CV(%)	32.26	20.76	21.1	18.4
Main treatments				
Protected	13.39(3.57)	6.12(13.94)	5152.7	3430.56 a
UnProtected	14.53(3.77)	23.97(29.05)	4763.2	1823.61b
CD(0.05)	ns	2.6	ns	131.4
CV(%)	29.3	13.15	34.4	5.4

Table2.2.4 Reaction of resis	stant cultures to white ea	ar damage by stem	borer and grain	yield in OPCT,
rabi 2022-23				

Figures in parentheses are arc sine transformed values. Means followed by same letter are not significantly different from each other at $P \le 0.05$

ICAR-IIRR Annual Progress Report 2023, Vol. 2 – Entomology

Appendix-I

Scientists involved

IIRR headquarters, Hyderabad: Drs. V. Jhansi Lakshmi, A. P. Padmakumari, Chitra Shanker, Ch. Padmavathi, Y. Sridhar and Dr. Chinna Babu Naik

SI. No.ZoneStateLocationCodeName of the cooperator, Designation1VII2VIIAndhraBapatla*BPTDr. N. Sambasiva Rao, .Sr. Scientist (Entomology)3VIIPradeshMaruteruMTUDr. A.D.V.S.L.P. Anand Kumar, Scientist (Entomology)4VIIPradeshNellore*NLRDr. I. Paramasiva Reddy, Scientist (Entomology)5IVAssamTitabarTTBDr. Udaya Babu, Scientist, Entomology5IVAssamTitabarTTBDr. Mayuri Baruah, Junior Scientist6IIIBiharPusaPSADr. Abbas Ahmed, Scientist (Entomology)7VAmbikapur *ABPDr.Kanhaiyalal Painkra, Scientist (Entomology)8VChattisgarhJagdalpurJDPDr. N. C. Mandawi, Scientist (Entomology)9VNum DathiReipurRPRDr. Sanjay Sharma, Pr. Scientist (Entomology)	ology)
1 VII 2 VII 3 VII 9 V 4 VII 5 IV Assam Titabar TIB Dr. Abbas Ahmed, Scientist (Entomology) Regolu* RGL Dr. Udaya Babu, Scientist, Entomology Ragolu* TTB Dr. Mayuri Baruah, Junior Scientist Ambikapur * ABP Dr. Abbas Ahmed, Scientist (Entomology) Ragolu Ambikapur * ABP Dr. Mayuri Baruah, Junior Scientist (Entomology) Ambikapur * ABP Dr. Abbas Ahmed, Scientist (Entomology) Raipur Ambikapur * ABP Dr. Kanhaiyalal Painkra, Scientist (Entomology) Raipur RPR Dr. N. C. Mandawi, Scientist (Entomology) Raipur RPR Dr. Sanjay Sharma, Pr. Scientist (Entomology)	ology) tomology)
2 VII Andhra Maruteru MTU Dr. A.D.V.S.L.P. Anand Kumar, Scientist (Entomology) 3 VII Pradesh Nellore* NLR Dr. I. Paramasiva Reddy, Scientist (Entomology) 4 VII Ragolu* RGL Dr. Udaya Babu, Scientist, Entomology 5 IV Assam Titabar TTB Dr. Mayuri Baruah, Junior Scientist 6 III Bihar Pusa PSA Dr. Abbas Ahmed, Scientist (Entomology) 7 V Ambikapur * ABP Dr.Kanhaiyalal Painkra, Scientist (Entomology) 8 V Chattisgarh Jagdalpur JDP Dr. N. C. Mandawi, Scientist 9 V Raipur RPR Dr. Sanjay Sharma, Pr. Scientist (Entomology)	tomology
3 VII Pradesh Nellore* NLR Dr. I. Paramasiva Reddy, Scientist (Entomology) 4 VII Ragolu* RGL Dr. Udaya Babu, Scientist, Entomology 5 IV Assam Titabar TTB Dr. Mayuri Baruah, Junior Scientist 6 III Bihar Pusa PSA Dr. Abbas Ahmed, Scientist (Entomology) 7 V Ambikapur * ABP Dr.Kanhaiyalal Painkra, Scientist (Entomology) 8 V Chattisgarh Jagdalpur JDP Dr. N. C. Mandawi, Scientist (Entomology) 9 V Raipur RPR Dr. Sanjay Sharma, Pr. Scientist (Entomology)	liomology)
4 VII Ragolu* RGL Dr. Udaya Babu, Scientist, Entomology 5 IV Assam Titabar TTB Dr. Mayuri Baruah, Junior Scientist 6 III Bihar Pusa PSA Dr. Abbas Ahmed, Scientist (Entomology) 7 V Ambikapur * ABP Dr.Kanhaiyalal Painkra, Scientist (Entomology) 8 V Chattisgarh Jagdalpur JDP Dr. N. C. Mandawi, Scientist 9 V Raipur RPR Dr. Sanjay Sharma, Pr. Scientist (Entomology)	gy)
5 IV Assam Titabar TTB Dr. Mayuri Baruah, Junior Scientist 6 III Bihar Pusa PSA Dr. Abbas Ahmed, Scientist (Entomology) 7 V Ambikapur * ABP Dr.Kanhaiyalal Painkra, Scientist (Entomology) 8 V Chattisgarh Jagdalpur JDP Dr. N. C. Mandawi, Scientist 9 V Raipur RPR Dr. Sanjay Sharma, Pr. Scientist (Entomology)	
6 III Bihar Pusa PSA Dr. Abbas Ahmed, Scientist (Entomology) 7 V Ambikapur * ABP Dr.Kanhaiyalal Painkra, Scientist (Entomology) 8 V Chattisgarh Jagdalpur JDP Dr. N. C. Mandawi, Scientist 9 V Raipur RPR Dr. Sanjay Sharma, Pr. Scientist (Entomology)	
7 V 8 V 9 V Ambikapur * ABP Dr.Kanhaiyalal Painkra, Scientist (Entomology) Jagdalpur JDP Dr. N. C. Mandawi, Scientist 9 V Raipur RPR Dr. Sanjay Sharma, Pr. Scientist (Entomology)	
8 V Chattisgarh Jagdalpur JDP Dr. N. C. Mandawi, Scientist 9 V Raipur RPR Dr. Sanjay Sharma, Pr. Scientist (Entomology)	y)
9 V Raipur RPR Dr. Sanjay Sharma, Pr. Scientist (Entomology)	
	/)
ן זע ן ייי ן New Deini	
11 III Jharkhand Ranchi RCI Dr. Binay Kumar, Jr. Scientist	
12 VI Nawagam NWG Dr. SanjuThorat, Asst. Res. Scientist	
13 VI Sujarat Navsari NVS Dr. Parth B. Patel, Asst. Res. Scientist (Entomology)	nology)
14 II Haryana Kaul KUL Dr. Sumit Saini, Asst. Scientist (Entomology)	
15 I H.P Malan MLN Dr. Chavi, SMS, Entomology	
16 II J & K Chatha CHT Dr. Rajan Salalia, Jr. Scientist (Entomology)	
17 I (UT) Khudwani KHD Dr. Basheer Ahmed , Professor, (Entomology)	r)
18 VII Brahmavar BRM Dr. Revanna Revannavar, Entomologist	
19 VII Karnataka Gangavathi GNV Dr. Sujay Hurali, Scientist (Entomology)	
20 VII Mandya MND Dr. Kitturmath, Entomologist	
21 VII Moncompu MNC Dr. Jyoti Sara Jacob, Asst. Prof. (Entomology)	·)
22 VII Rerala Pattambi PTB Dr. K. Karthikeyan, Prof. of Entomology	<u>,</u>
23 V M.P Rewa REW No Entomologist-No trials allotted	
24 VI Karjat KJT Dr. Vaishali Sawant, Entomologist	
25 V Manarashtra Sakoli SKL No Entomologist, Trials were conducted	
26 IV Manipur Wangbal WBL No Entomologist-No trials allotted	
27 III Cuttack* CTC Dr. S.D.Mohapatra, Pr. Scientist & Head (Entomology	omology)
28 III Odisha CHP Dr. Atanu Seni, Jr Entomologist	
29 II Punjab Ludhiana LDN Dr. P. S. Sarao, Principal Scientist	
30 VII Aduthurai ADT Dr. P. Anandhi, Asst. Professor	
31 VII Tamil Nadu Coimbatore CBT Dr. Sheela Venugopal, Asst. Professor (Entomology.)	nology.)
32 IV Tripura Arundhutinagar* AND Smt. Mithu Rani Debnath, Asst. Director	
33 VII Jagtial* JGT Dr. S. Omprakash, Scientist (Entomology)	
34 VII Telangana Raiendranagar RNR Dr. N. Ramagopala Varma, Pr. Scientist (Entomology)	omoloav)
35 VII Warangal WGL Dr. R. Shravan Kumar, Scientist (Entomology)	/)
36 VII Puducherry Karaikal* KRK Dr. K. Kumar, Prof. & Head (Agril, Entomology)	/ v)
37 VII (UT) Kurumbapet KBP No Entomologist-No Trials allotted]/
38 II Uttaranchal Pantnagar PNT Dr Aiav K Pandev Prof (Dept of Entomology)	(ענ
39 III Masodha MSD Dr. Saniai Rainoot looking after Masodha trials	s
40 III Uttar Pradesh Ghaghraghat GGT Dr. Saniai Raipoot Entomologist	-
41 III West Bengal Chinsurah CHN Dr. Sitesh Chatteriee Entomologist	

* - Voluntary Centre

Trials allotted and conducted at different locations

Appendix II

State	Leastion	Rabi	2022-23	Khari	f 2023
State	Location	Allotted	Received	Allotted	Received
Andhra Pradesh	Bapatla *	2	2	3	3
	Maruteru	4	4	13	13
	Nellore *			8	7
	Ragolu *			5	4
Assam	Titabar	2	2	12	12
Bihar	Pusa			8	8
Chattisgarh	Ambikapur *			7	7
	Jagdalpur			12	12
	Raipur			12	12
Gujarat	Navsari			10	10
	Nawagam			9	9
Haryana	Kaul			6	5
Himachal Pradesh	Malan			8	7
Jammu & Kashmir	Chatha			6	6
	Khudwani	1	1	5	5
Jharkhand	Ranchi			6	6
Karnataka	Brahmavar	1	1	7	7
	Gangavathi			14	14
	Mandya			11	11
Kerala	Moncompu	1	1	11	11
	Pattambi	4	4	12	12
Madhya Pradesh	Rewa			0	0
Maharashtra	Karjat			7	7
	Sakoli			5	5
Manipur	Wangbal			0	0
New Delhi	New Delhi *			4	4
Odisha	Cuttack *	1	1	5	3
	Chiplima			9	9
Puducherry	Karaikal *			4	4
	Kurumbapet			0	0
Punjab	Ludhiana			17	17
Tamil Nadu	Aduthurai	2	2	13	13
	Coimbatore			12	12
Telangana State	Jagtial *			7	7
	Rajendranagar			12	12
	Warangal			11	11
Tripura	Arundhutinagar *	1	1	4	4
Uttar Pradesh	Ghaghraghat			7	7
	Masodha			6	6
Uttaranchal	Pantnagar			14	14
West Bengal	Chinsurah	4	4	10	10
Total trials in funded and v	oluntary centres	23	23	332	326
% Receipt of data for khari	f 2023 & rabi 2022-23	10	0.00	98	.2
Overall % Receipt of data			99.	.10	

ACKNOWLEDGEMENTS

Our thanks are due, to the scientists located at different cooperating centres for the conduct of trials as a part of the Coordinated Entomology Program. Thanks are also due to Dr. B. Sailaja, Principal Scientist and Dr. Santosha Rathod, Scientist, Agril. Statistics, for helping in the statistical analysis of data. Thanks are due, to Dr. N. Somasekhar, Principal Scientist Nematology and Dr. N. Satish Chavan, Sr.Scientist, Entomology section for their cooperation and suggestions and Sri. P. M. Chirutkar, Sri. K. Shravan Kumar and Sri. T. Venkaiah, Technical Officers, Mr. Patil Sukesh YP-1, G Maniratnam YP1 for their efforts in conduct of the trials and/or preparation of the report at IIRR. Special thanks are due, to Sri. Amudhan Srinivasan, Asst. Chief Technical Officer, Entomology Section, for support in conduct of the trials, preparation and printing of the report.

PLANT PATHOLOGY

Correct citation: ICAR-Indian Institute of Rice Research, 2024 Progress Report 2023, Vol II, Entomology and Pathology All India Coordinated Research Programme on Rice ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad-500 030, TS, India

	CONTENT	Page No.
	SUMMARY	3.1-3.7
	INTRODUCTION	3.8
Ι	HOST PLANT RESISTANCE	
	SCREENING NURSERIES	
	Leaf blast	3.10-3.21
	Neck blast	3.22-3.30
	Brown spot	3.31-3.40
	Sheath blight	3.41-3.51
	Sheath rot	3.52-3.58
	Bacterial blight	3.59-3.69
	Rice tungro disease	3.70-3.75
	Glume discolouration	3.75-3.80
	Multiple Disease Resistance	3.81-3.85
II	FIELD MONITORING OF VIRULENCES	
	1. Pyricularia oryzae	3.86-3.89
	2. Xanthomonas oryzae pv. oryzae	3.90-3.95
III	DISEASE OBSERVATION NURSERY	3.96-3.107
IV	DISEASE MANAGEMENT TRIALS	
	1. Evaluation of combination fungicides against location specific diseases	3.108-3.127
	2. Evaluation of Bio-control formulations against fungal diseases	3.128-3.140
	3. Integrated pest management (Special trial)	3.141-3.145
	4.Special trial on yield loss assessment due to major rice diseases	3.146-3.153
	5. Special Screening Trial on False smut Screening	3.154-3.158
	6. Special Screening Trial on Brown spot Screening	3.159-3.160
V	Report of AICRPR - Rainfed Trials - 2023-2024	3.161-3.163
	Annexure	
	I. Weather data of Plant Pathology Coordinated locations during <i>Kharif</i> , 2023	3.164-3.170
	II. Details on the Plant Pathology Coordinated Centres	3.171-3.172
	III. Abbreviations	3.173

AICRIP Progress Report- Plant Pathology 2023

3.PATHOLOGY

SUMMARY

The All India Coordinated Rice Pathology Program of the ICAR-Indian Rice Research Institute is an example of effective linkage and testing mechanism to assess the advanced breeding lines over a wide range of climatic and disease epidemic conditions and to identify broad spectrum of resistance to major rice diseases. This also helps in developing need-based management options for controlling major diseases of rice. During 2023, a total of 16 trials were conducted at 48 locations on host plant resistance, field monitoring of virulence of major pathogens and disease management methods. The details on screening nurseries and disease management trials proposed and conducted at various test locations are given in Table 1. The summary of observations is given below. Detailed data on extensive screening of diverse genotypes are furnished in a separate report entitled 'National Screening Nurseries, 2023'.

I. HOST PLANT RESISTANCE (NSN-1, NSN-2, NSN-H, NHSN and DSN)

✤ LEAF BLAST

The entries for leaf blast resistance were evaluated under NSN-1, NSN-2, NSN-Hills, NHSN and DSN at 25, 16, 11, 23 and 22 locations respectively. Screening was conducted under natural and artificial condition in different centers. The disease pressure was very high (LSI>7) at Lonavala; it was high at Cuttack, Jagdalpur and Mandya in different nurseries. The disease pressure was moderate in most of the locations; and in few centres such as Wangbal, Maruteru and Ponnampet, disease pressure was low (LSI< 3.0). None of the entries in NSN-1, NSN-2 found resistant for leaf blast, however based on overall low disease score and high promising index, some of the promising entries included were IET#30593, 30561, 30573, 31054, 29694, 30577, 32064, 29142, 29940, 30020, 31050, 30888, 29696, 29689, 30651, 30233, 28965, 30942, 30740, 29975, 30917, 30235, 30578, 31051 and 30579 under NSN-1; IET# 31989, 31068, 31532, 31508, 31597, 31525, 31638, 31552, 31857, 31971, 31533, 31075, 31621, 31715, and 31528 under NSN-2; IET# 31420, 31422, 31409, 31389, 31403, 31405, 31429, and 31388 under NSN-Hills. None of the entries found resistant against leaf blast in NHSN and DSN, however, IET# 31435, 31433, 31480, 31469, 31447, 31473, 31442, 31459, 31437, 31438, 31455 and 31474 under NHSN and RP 6469-89, CB 18577, RBN 2, RNR 31581, RBN-1, RBN-6, CB 18586, NLR 3217, RBN-7, KNM 13525, KNM 13449, KNM 15361 and JGL 3889 under DSN were considered promising.

NECK BLAST

The entries were evaluated under NSN-1, NSN-2, NSN-Hills, NHSN and DSN at 10, 5, 6, 8 and 7 centers respectively. In most of the centres the screening was carried out under natural infection condition except at Mandya, Rajendranagar and Nellore, where artificial method of inoculation was followed. In majority of the locations the disease pressure varied from moderate to high, which was good enough for selection of the best entries. A total of 11 entries *viz.*, IET # 29560, 30252, 29808, 29820, 32065, 31120, 30918, 28965, 30021, 30772, and 30907 under NSN-1 and 10 entries *viz.*, IET# 31924, 31681, 31683, 31710, 31835, 31820, 31616, 31821, 31836 and 31974 under NSN-2 were found resistant. In NSN- hills nursery entries *viz.*, 31420, 31423, 31412, 31416 and 31428 were found resistant with SI \leq 3.0. None of the entries found resistant under NHSN, however some of the promising entries with low

disease score and high promising index included IET# 31490, 31489, 31475, 31469,31492, 31452, 31466, 31473, 31464 and 31496. Donors such as VP-R262-SHB, VP-D6-SHB, VP-D8-SHB, VP-D9-SHB, CB 20166, VP-R45-SHB, NLRBL-8, VP-R243-SHB, WGL 14, VP-R107-SHB, VP-R109-SHB, 4857 and VP-D5-SHB were reported resistant under DSN.

*** BROWN SPOT**

The entries were evaluated under NSN-1, NSN-2, NSN-Hills, NHSN and DSN at 19, 12, 5, 13 and 13 centers respectively against brown spot disease across India. In most of the centres the screening was carried out under natural infection condition except at Coimbatore, Gangavathi, Chinsurah, IIRR, Ludhiana and Pusa; where screening was carried out artificially by spraying spore suspension. In majority of the centres the brown spot pressure was moderate to high; it was very high at Gangavathi (LSI >7) across all the nurseries. None of the entries found resistant to brown spot across the locations; however, some of the some of the promising entries with low disease score and high promising index included IET# 29692, 31129, 29549, 30024, 29833, 30233, 29694, 30830, 30752, 30657, 29142, 29405, 32074, 32073, 30178, 32037 and 32040 under NSN-1; IET # 31875, 31803, 31075, 31831, 31680, 31822, 31116, 31920, 31911, 31876, 31811, 31838, 31873, 31877, 31879 and 31936 under NSN-2; IET # 31407, 30513, 31387, 29654, 31388, 31389, 31383, 31384, 31399, 31411, 30503, 31385, 31398 and 31405 under NSN-H; IET # 31474, 31464, 31473, 31480, 31442, 31466, 31495, 31498, 31487, 31489, 31449, 31444, 31490, 31460, 31461, 31465 and 31448 under NHSN. Promising donors for brown spot under DSN included NLR 3595, NLRBL-2, KNM15236, 687-3, NLRBL-7, NLRBL-5, KNM12346, 680-2, RP-Bio-Patho-4, NLRBL-3, RTCNP-138, RP-Bio-Patho-3, NLRBL-9, KNM15361, C101A51, NLRBL-6 and 683-1.

✤ SHEATH BLIGHT

The entries were evaluated under NSN-1, NSN-2, NSN-Hills, NHSN, and DSN at 22, 20, 3, 22 and 21 locations, respectively. In most of the locations, the disease pressure was moderate to high. None of the entries were found resistant (SI \leq 3) against sheath blight in all the nurseries during *Kharif*-2023. The promising entries to sheath blight were IET # 30078, 29549, 30827, 30844, 30762 and 30083 in NSN-1; IET # 31682, 31662, 31696, 31687, 31906, 31681, 31836, 31059, and 31553 in NSN-2; IET # 31415, 31383 and 31420 in NSN-H; IET # 31489, 31456, 31436, 31467, 30556, and 31496 in NHSN; and entries *viz.*, VP-R36-SHB, VP-R158-SHB, 19345, VP-R109-SHB, VP-R262-SHB, NLRBL-7, NLR 3186, VP-R104-SHB, VP-R298-SHB, VP-R297-SHB, CB 20164, CR1014, NLRBL-5, NLRBL-8, CK 145-3, CK 35-3, NLRBL-4, CB 20117, and RTCNP-97 in DSN.

SHEATH ROT

The entries under NSN-1(432), NSN-2(643), NSN-Hills (85), NHSN (120) and DSN (212) were screened against sheath rot at 12, 5, 2, 12 and 8 locations, respectively. Screening for sheath rot was conducted under natural infection conditions at most of the locations except at Chinsurah, Navasari, Pusa, Raipur, Rajendranagar and Titabar, where pathogen was artificially inoculated to screen the entries. The disease pressure was moderate to high at most of the locations across the nurseries. Some of the highly promising entries scored less than 3 were IET # 28906, 31402, 31414, 31420, 31421, and 31422 in NSN-H and none of the entries recorded resistant reaction across the locations under NSN1, NSN-2, NHSN and DSN.

***** GLUME DISCOLOURATION

Glume discolouration (GD) was observed at four locations viz., at Lonavala, Navasari Nawagam and Chatha during Kharif 2023. Some of the promising entries were: IET # 30641, 30966, 30902, 30868, 31130, 30658, 30555 in NSN-1; 31582, 31589, 31642, 31719, 31725, 31729, in NSN-2; 31478, 31436, 31458, 31466, 31468, 31490, 31437 in NHSN and IET 19345, VP-R47-SHB, VP-R262-SHB AP MS-14B, 733, 19451, RBN-3, RBN-6, VP-R27-SHB VP-R278-SHB, VP-R294-SHB in DSN.

*** RICE TUNGRO DISEASE**

The entries in NSN-1, NSN-2, NHSN and DSN were evaluated at two locations for rice tungro virus disease. The promising entries identified in different nurseries were: IET # 32067, 32067, 32067, 31119, 30657, 32036, in NSN-1; IET # 31570, 31582, 31598, 31504, 31514, 31523, 31527, 31528, 31536, 31618 in NSN 2; IET # 29659, 28906, 30513 and Vivekdhan 62 in NSNH; IET # 31441, 31432, 31435, 31440, 31476, 31485 and 31497 in NHSN and VP-R289-SHB, CB 17502, WGL 1869 and 4706 in DSN.

✤ BACTERIAL BLIGHT

The test entries and various checks in different bacterial blight screening nurseries viz., NSN-1, NSN-2, NSN-Hills, NHSN and DSN were evaluated at 25, 17, 4, 20 and 20 locations, respectively. In all the locations screening was carried out under artificial inoculation conditions. The number of entries including checks in different nurseries was 432 in NSN-1, 643 in NSN-2, 85 in NSN-Hills, 120 in NHSN and 212 in DSN. Some of the promising entries against bacterial blight in different nursery were IET # 30827, 32052, 30835, 30830, 30605, 32066, 32055, 32053, 32052, 30772, 32048, 29891, 30877, 31002, 30240, 30078, 30819, 31120, 32055 and 30827 under NSN-1; IET # 31645, 31710, 31566, 31627, 31723, 31637, 31665, 31621, 31646, 31568, 32030, 31781, 30649, 31632, 31789, 31658, 31586, 31605, 32002, 31705, 31908, 32001 and 31578 under NSN-2; IET # 31431, 28906, 31393, 31401, 31381, 31391 and 31404 in NSN-H; IET # 31450, 31480, 31471, 31460, 31451, 31495, 31449, 31459, 31436 and 31489 under NHSN; VP-R297-SHB, RP-Bio-Patho-4, RP-Bio-Patho-3, VP-R294-SHB, VP-R261-SHB, VP-R44-SHB, VP-R262-SHB, RP-Bio-Patho-9, VP-R249-SHB, NLRBL-7, VP-R25-SHB, VP-R45-SHB, VP-D6-SHB, VP-R36-SHB, RTCNP-97, VP-R289-SHB, VP-R78-SHB, 19345, NLRBL-2, NLRBL-8, RP-Bio-Patho-5, NLRBL-3, NLRBL-4 and CK 145-3 in Donor Screening Nursery.

✤ MULTIPLE DISEASE RESISTANT LINES

Among the entries tested across the locations, total of 121 entries found moderately resistant or resistant to minimum of two and maximum of four diseases. A total of 25, 18, 19, 27 and 32 entries were identified with multiple disease resistance (for 2 or more diseases) in NSN-1, NSN2, NSN-H, NHSN and DSN screening nurseries respectively. The entries IET# 30830 (MR to NB, SHB, BS, BB and SHR), 29820 (R to NB, MR to SHR, RTD and GD), 29549 (MR to SHB, BS and SHR), 29891 (MR to NB, SHB and BB), 30078 (MR to SHB, BB and SHR), 30233 (MR to LB, BS and SHR) and 30877 (MR to SHB, BB and SHR) showed moderate reaction for three diseases in NSN-1. IET# 31710 showed resistance reaction to NB, MR to BS, SHR and 31719 showed resistance to NB, SHR &GD in NSN-2. IET# 31420 (Resistant to LB, NB&SHR & MR to SHB) showed resistant or moderate resistant reaction to four diseases and 31383 (MR to SHB, BS&SHR), 31391 (MR to NB, SHB&SHR), 31402 (R to SHR&MR to NB, SHB), 31405 (MR to LB, BS&SHR) and

31422(R to SHR& MR to LB, NB) were showed resistant or moderate resistant reaction to three diseases in NSN-H. The entries IET# 31436 (MR to SHB, BB SHR &GD), 31460 (MR to BS, BB, SHR&GD), 31466 (MR to NB, BS, SHR & GD), 31473 (MR to LB, NB, BS&GD), 31489 (MR to NB, SHB, BS & BB), 31469 (MR to LB, NB& SHR), 31490 (MR to NB, BS&GD) 31495 (MR to BS, BB & SHR) and 31496 (MR to NB, SHB&RTD) showed resistance to more than two diseases in NHSN. In DSN, eleven donors exhibited resistant or moderate reaction to three and more diseases and that includes 19435 (MR to SHB, BB&GD), CK 145-3 (SHB, BB &SHR), CR 1014 (MR to NB, SHB&SHR), NLRBL-5 (MR to NB, SHB, BS & SHR), NLRBL-7 (MR to SHB, BS, BB&SHR), NLRBL-8 (MR to NB, SHB, BB & SHR), VP-D6-SHB (MR to NB, SHB, BB & SHR), VP-R262-SHB (NB, SHB, BB & GD), VP-R297-SHB (MR to SHB, BB & SHR) and VP-R36-SHB (MR to SHB, BB & SHR).

II. FIELD MONITORING OF VIRULENCE

1. Pyricularia oryzae

The experiment was conducted at 24 locations during the crop season to monitor the blast reaction on different genotypes. The trial included 39 cultivars consisting of near isogenic lines, international differentials, donors and commercial cultivars. The disease pressure was very high at Lonavala (LSI 7.3), while it was high at Cuttack (LSI 6.4). At Gudalur, Hazaribagh, Jagtial, Almora, Coimbatore, Gangavathi, Navasari, Khudwani, and Nawagam, the LSI was recorded in between 5.0 to 6.0. Out of all 39 differentials; Tetep, RP Bio Path-3, RP Bio Path-2, Raminad str-3, and zenith showed resistant to moderate resistant reaction across the locations with SI of <4.0. Tetep was highly resistant across 14 locations but it was susceptible at Cuttack (score 7.0), indicating its use as potential donor. Differential line-RP Bio Patho 3 possessing Pi2 and RP Bio Path 2 possessing Pi54 showed resistance reaction at 11 and 9 locations respectively; while both were susceptible at four locations. Raminad str-3 was found highly susceptible at Lonavala, Cuttack, Gangavathi and Jagtial, while Zenith, possessing a combination of three genes (Pi-z+Pi-a+Pi-i) found highly susceptible at Lonavala. The susceptible check HR-12 recorded resistant reaction at Karjat, Mugad and Wangbal; while CO-39 was resistant at Imphal, Karjat, and Maruteru. The reaction pattern of genotypes at all the locations was grouped into eight major groups at 30% dissimilarity coefficient. The reaction pattern of Pyricularia oryzae isolate from Lonavala and Cuttack were distinct from the rest of the isolates. The isolate from Coimbatore and Gudalur are grouped in same cluster. Similarly, the isolates from Navsari and Almora; Hazaribagh and Jagtial grouped together. The other 16 isolates formed a major cluster showing same kind of reaction pattern. The difference in disease reaction score of susceptible and resistant checks reveals that shift in the pathogen population.

2. Xanthomonas oryzae pv. oryzae

Trial on monitoring virulence of bacterial blight (BB) pathogen, *Xanthomonas oryzae* pv. *oryzae* (*Xoo*) was conducted at 24 locations. At Ludhiana, the trial was conducted with 5 isolates. The rice differentials used in this trial consisted of eleven near isogenic lines (IRBB lines) possessing different single BB resistant genes in the genetic background of rice cultivar IR 24. Susceptible check varieties like IR 24, TN1 and resistant check variety Improved Samba Mahsuri was also included in the trial. Most of the differentials possessing single bacterial blight resistance genes like *Xa1*, *Xa3*, *Xa4*, *xa5*, *Xa7*, *xa8*, *Xa10*, *Xa11* and *Xa14* were susceptible at most of the locations. BB resistance gene *xa13* was susceptible in 12

locations while *Xa21* was susceptible in 9 locations. Based on their virulence, the isolates were grouped into high, moderate and low virulence groups. Based on the reactions of the isolates on differentials possessing single BB resistance genes, the isolates from Cuttack, IIRR, Raipur, Maruteru and Chiplima were categorized as highly virulent. Majority of the isolates were categorized as moderately virulent. The isolate from Moncompu was least virulent. The isolates from Maruteru and Raipur were quite different from other isolates and from each other and formed separate clusters.

III. DISEASE OBSERVATION NURSERY

The trial was proposed at 11 locations i.e., Bankura, Chatha, Chinsurah, Kaul, Malan, Mandya, Maruteru, Moncompu, Nawagam, Pusa and Raipur. The data however was received from 8 centers for this trial. The trial of disease observation nursery (DON) was proposed to be conducted in 11 locations, but actually conducted at 8 locations with different sowing dates viz., early, normal and late with respect to the respective locations with an aim to estimate the effect of such varied sowing/planting dates on the occurrence and severity of the disease in the respective endemic regions. Disease development is generally known to depend on the availability of susceptible host, virulent pathogen and prevalence of favorable weather condition. The incidence of leaf blast was found to be relatively less in this year when compared to the previous year. Further the incidence was also more in the late sown crops than when compared to the early and normal sown crops except at Raipur. Sheath blight and bacterial blight severity was more in early sown crop (60.52 % in Swarna & 5.78% PDI in BPT 5204) compared to normal and late sown crops in the Maruteru center. In Moncompu center, the severity of sheath blight and bacterial blight was very low, the sheath blight severity was more in early sown crop as it received more rainfall compared to the normal and late sown crops. In Nawagam, sheath rot incidence was more in late sown crops, the severity of the sheath rot was increased with decreasing rainfall in Nawagam center.

IV. DISEASE MANAGEMENT TRIALS

TRIAL 11. EVALUATION OF FUNGICIDES AGAINST LOCATION SPECIFIC DISEASES

A trial was conducted with the objective to identify an effective combination fungicidal molecule against rice diseases. The trail constituted with fungicidal molecules viz., mancozeb 50% + thiophanate methyl 25% WG (3.0 g/l), kasugamycin 5% + copper oxychloride 45% WP (1.5 g/l), azoxystrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l), fenoxanil 5% + isoprothiolane 30% EC (2 ml/l), azoxystrobin 14 % + epoxiconazole 9 % SC (1.5 ml/l), picoxystrobin 7.05% + propiconazole 11.7% SC (2 ml/l), and tebuconazole 50%+ trifloxystrobin 25% w/w WG (0.4 g/l). trail was proposed at 35 centers and conducted at 32 centres. The fungicides were evaluated against leaf blast (11 locations), neck blast (10 locations), sheath blight (15 locations), brown spot (eight locations), sheath rot (four locations), grain discoloration (two locations) and stem rot (one location).

Rice leaf blast and neck blast diseases were effectively reduced their disease severity (LB:16.6%) and incidence (LB:33.3%; NB: 13) with application of azoxystrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l). Tebuconazole 50%+ trifloxystrobin

25% w/w WG (0.4 g/l) was found next best chemical in reducing the leaf blast (DS:20.7%; DI:29.7%) and neck blast (DI:14%). Sheath blight disease severity (23.8%) and incidence (42.5%) were maximum reduced through application of azoxystrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l) among other fungicides. Azoxystrobin 14 % + epoxiconazole 9 % SC (1.5 ml/l) was also found effective in minimizing the sheath blight (DS:26.3%; DI: 42.7%). Fungicide, azoxystrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l) also found effective in reducing the brown spot and sheath rot of rice. The new combi-product, azoxystrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l) showed broad spectrum activity against leaf blast, neck blast, sheath blight, brown spot and sheath rot.

TRIAL 12. EVALUATION OF BIO-CONTROL FORMULATIONS AGAINST FUNGAL DISEASES

Among the two different formulations of the bioagents tested, the liquid formulation was found to be better than the solid formulation. Similarly, the combination of bioagent formulations and fungicides were providing higher percent disease control and increased plant yield than when compared to the fungicide treatment alone. Among all the treatments and across all the locations, the treatment T6 = Seed treatment followed by seedling dip (a) 10 g/l of liquid Formulation+ fungicide for the respective disease (21.54%) has shown best in controlling the disease as it produced very less disease as compared to the all the treatments tested followed by the treatment T5 (24.11%). Among the different treatments applied for the management of the sheath blight disease, Moncompu reported the highest percentage control over the disease (DC) viz., 93.36% followed by IIRR (90.54) when applied with the liquid formulation of the bioagent as seed treatment followed by seedling dip @ 5g/l followed by foliar spray of hexaconazole @ 2ml/l at tillering stage (T6). Karaikal centre reported the highest percent decrease in disease severity over control against three diseases of rice viz., False smut, Neck blast and Sheath rot, when the plants were treated with bioagent as seed treatment plus foliar spray @ 5g/l with liquid formulation (T4) followed by the bioagent as seed treatment plus foliar spray @ 5g/l with solid formulation (T3). In Rewa, treatment T6 viz., seed treatment plus seedling dip (10g/l liquid formulation) and foliar spray of fungicide was the best in controlling the leaf blast disease which is reducing the 59% of the disease when compared to the untreated control (T8) followed by the treatment T5 (53% decrease over control) and T4 (47% decrease over control).

TRIAL 13. INTEGRATED PEST MANAGEMENT (SPECIAL - IPM TRIAL)

The trial was conducted at five different zones viz., Zone II (Northern zone - Ludhiana, Pantnagar, Kaul); Zone III (Eastern zone - Chiplima, Masodha); Zone V (Central zone - Jagdalpur); Zone VI (Western zone - Nawagam, Navsari) and Zone VII (Southern zone - Aduthurai, Mandya, Gangavathi, Rajendranagar). Disease severity of various diseases, recorded at weekly intervals was converted in to AUDPC values and compared. IPM practices against leaf blast were effective at Chiplima, Gangavathi, Kaul, Mandya, Masodha, and Jagdalpur compared to farmer's practices. With respect to neck blast, IPM practices were effective at Chiplima, Jagdalpur, Gangavathi, Masoda and Rajendranagar. In case of sheath blight disease, IPM practices performed well compared to farmer practices at Gangavathi, Jagdalpur, Kaul, Navasari, and Pantnagar. IPM was effective against bacterial blight at Aduthurai, Chiplima, Gangavathi, Kaul, Masodha, and Pantnagar. Sheath rot disease was reduced effectively due to adoption of IPM practices at Nawagam. Similarly, IPM practices

effective against brown spot at Chiplima, Gangavathi, Navsari, Pantnagar, Rajendranagar and Jagdalpur. IPM practices reduced false smut disease incidence at Pantnagar, Jagdalpur, Aduthurai and Gangavathi.

TRIAL 14. SPECIAL TRIAL ON YIELD LOSS ASSESSMENT DUE TO MAJOR RICE DISEASES

The yield loss trial on leaf blast was conducted at Jagdalpur, Mandya, and IIRR. The overall mean value revealed that 53.63% of PDI reduced the yield up to 37.21%; 38.10% of PDI recorded 27.06% of yield reduction and 26.54% of PDI recorded the 12.20% of yield reduction. With respect to sheath blight, the trial was conducted at Gangavathi, Ludhiana, Mandya, Maruteru, Moncompu and IIRR. The mean value across the locations and the results revealed that 73.41% of PDI recorded the yield reduction of 40.13%; 53.45% of PDI recorded the yield reduction. The trial on bacterial blight was taken up at Moncompu, Maruteru, Pantnagar, Pattambi and IIRR. The overall mean values across the locations showed that 66.88% PDI caused a yield loss of 31.35%; 47.03% of PDI caused a yield loss of 20.63% and 37.23% of PDI recorded a yield loss of 12.20%

TRIAL 15: SPECIAL SCREENING TRIAL ON FALSE SMUT

One hundred and twelve National Screening Nursery 1 (NSN-1) Advanced Varietal Trial entries were selected for false smut screening trial. The trial was proposed at five locations *viz.*, Gangavathi, Gudalur, IIRR Ludhiana, Masodha and it was conducted at four locations except Ludhiana. The entries were screened naturally at all the locations and artificially at IIRR. All the location data were compared based on number smut balls per panicle/Hill. Among the 112 lines screened both artificially and naturally, fourteen entries viz., 30178, CSR 36, 30078, 29536, 30032, 30029, 30020, 29405, 29549, 30240, 30270, 29284, 29290 and ADT 39 found as tolerant with the smut balls of either 0 to 6 smut balls/Hill or 0 to 3 smut balls/Panicle. These results are preliminary and these results must be confirmed in *Kharif* 2024 across the false smut hot spot locations to confirm the false smut disease tolerance.

INTRODUCTION

The All-India Co-ordinated Rice Pathology Programme of Indian Institute of Rice Research (ICAR-IIRR) provides an effective linkage for collaboration among state agricultural universities, national institutes and Department of Agriculture, Agrochemical Industry and others. The objectives of the Programme are:

- To accelerate genetic improvement of rice for resistance against major diseases occurring in different ecosystems of the country.
- To provide a testing mechanism to assess the advanced breeding lines over a wide range of climatic, cultural, soil and disease epidemic conditions.
- To identify broad spectrum of resistance to major rice diseases.
- To monitor and evaluate the genetic variation of rice pathogens.
- To monitor the prevalence of diseases in the country.
- To develop need-based disease management practice.
- To identify production constraints in different ecosystems through Production Oriented Survey.

To achieve these objectives during 2023, a total of 16 trials were conducted at 48 locations on host plant resistance, field monitoring of virulence in major pathogens and disease management. Five national screening nurseries comprising of 1,492 entries of advanced breeding lines and new rice hybrids were evaluated for their reactions to major rice diseases at 48 locations.

The composition of the nurseries is as follows:

- National Screening Nursery 1 (NSN-1) 432 entries drawn from Advanced Variety Trials.
- National Screening Nursery 2 (NSN-2) 643 entries from Initial Variety Trials.
- National Screening Nursery-Hills (NSN-H) 85 entries from Advanced and Initial Varietal Trials.
- National Hybrid Screening Nursery (NHSN) 120 entries from Initial National Hybrid Rice Trials (HRT'S).
- ✤ Donor Screening Nursery (DSN) 212 entries from different centres.

The virulence patterns of blast and bacterial blight pathogens in the field were monitored, using differentials for respective diseases at disease endemic areas. The prevalence of the diseases was monitored in three sequentially sown disease observation nurseries laid-out in the endemic locations.

The disease management trials were conducted at hot-spot locations to evaluate the efficacy of new fungicides and commercially available combination fungicide formulations against major rice diseases. Production Oriented Survey (POS) was undertaken in 18 centres (16 states) to identify the production constraints in different rice growing ecosystems.

The weather conditions and location details are given in Annexure I to Annexure III. Out of 554 experiments proposed, data were received from 518 experiments of 16 trials indicating the good response with 93.5 % data receipt from the centres.

S No	Leastion	Co operators	Funded/	Experi	ments
5.110	Location	C 0-operators	Voluntary	Proposed	Conducted
1	Aduthurai	Dr. K. Rajappan	Funded	18	14
2	Almora	Dr. Gaurav Verma	Voluntary	7	7
3	Arundhutinagar	Drs. Uttam Saha & Sentu Acharya	Funded	7	4
4	Bankura	Dr. C. K. Bhunia	Funded	24	14
5	Chatha	Dr. Vijay Bahadur Singh	Funded	11	14
6	Chinsurah	Dr. Dilip Kumar Patra	Funded	12	12
7	Chiplima	Dr. Rini Pal	Funded	7	7
8	Coimbatore	Dr. C. Gopalakrishnan	Funded	8	8
9	Cuttack	Drs. Arup K. Mukherjee, Srikanta Lenka & Manas Kumar Bag	Voluntary	8	8
10	Gangavathi	Dr. Pramesh Devanna	Funded	22	22
11	Ghaghraghat	Dr. Amrit Lal Upadhaya	Funded	10	9
12	Gudalur	Dr. C. Gopalakrishnan	Voluntary	6	6
13	Hazaribag	Dr. Someshwar Bhagat	Voluntary	11	9
14	ICAR-IIRR	Drs. M. S. Prasad, G S. Laha, D. Krishnaveni, C. Kannan, D. Ladhalakshmi, V. Prakasam, K. Basavaraj and GS. Jasudasu	HQ	31	31
15	Imphal	Dr. A. Ratankumar Singh	Voluntary	8	7
16	Jagdalpur	Dr. R. S. Netam	Funded	9	9
17	Jagtial	Dr. N. Balram	Voluntary	4	4
18	Karaikal	Dr. C. Jeyalakshmi	Voluntary	4	4
19	Karjat	Dr. Pushpa D. Patil	Funded	16	16
20	Kaul	Dr. Mahaveer Singh	Funded	7	6
21	Khudwani	Dr. F. A. Mohiddin	Funded	12	9
22	Lonavala	Dr. K. S. Raghuwanshi	Voluntary	26	26
23	Ludhiana	Dr. Jagjeet Singh Lore	Funded	15	15
24	Malan	Dr. Suman Kumar	Funded	11	5
25	Mandya	Dr. V. B. Sanath Kumar	Funded	9	9
26	Maruteru	Dr. V. Bhuvaneswari	Funded	21	21
27	Masodha (Faizabad)	Dr. Vindeshwari Prasad	Funded	11	11
28	Moncompu	Dr. M. Surendran	Funded	13	13
29	Mugad	Dr. Gurupada Balol	Voluntary	12	8
30	Navsari	Dr. Vijay A. Patil	Funded	18	22
31	Nawagam	Dr. Rakesh Kumar Gangwar	Funded	20	26
32	Nellore	Dr. P. Madhusudhan	Voluntary	8	8
33	New Delhi	Drs. B. Bishnu Maya & G Prakash	Voluntary	9	3
34	Pantnagar	Dr. Bijendra Kumar	Funded	15	15
35	Patna	Dr. Md. Reyaz Ahmad	Funded	6	6
36	Pattambi	Dr. P. Raji	Funded	16	16
37	Ponnampet	Dr. Imran Khan H. S.	Funded	13	13
38	Pusa	Dr. R. K. Ranjan	Funded	11	11
39	Raipur	Dr. Pradeep Kumar Tiwari	Funded	4	3
40	Rajendranagar	Dr. T. Kiran Babu	Funded	14	14
41	Ranchi	Dr. Manoj Kumar Barnwal	Voluntary	6	6
42	Rewa	Dr. S. K. Tripathi	Funded	11	10
43	Sabour	Dr. Amarendra Kumar	Voluntary	7	8
44	Titabar	Dr. Popy Bora	Funded	12	7
45	Umiam (Barapani)	Dr. Pankaj Baiswar	Voluntary	2	1
46	Upper Shillong	Dr. Victor Tariang	Funded	5	5
47	Varanasi	Dr. R. K. Singh	Funded	11	10
48	Wangbal	Dr. Kh. Ngamreishang	Funded	6	6
		Total Experiments (93.5%)		554	518

Table 1: Scientists involved in Plant Pathology Coordinated Programme, *Kharif* 2023. ICAR-IIRR, Headquarters, Hyderabad- Dr. M. Srinivas Prasad, PI; Associates: Drs. G. S. Laha, D. Krishnaveni, C. Kannan, D. Ladhalakshmi, V. Prakasam, K. Basavaraj and G. S. Jasudasu

I. HOST PLANT RESISTANCE

TRIAL No.1: SCREENING FOR LEAF BLAST RESISTANCE

National Screening Nursery-1 (NSN-1)

The National Screening Nursery (NSN-1) comprised of 432 entries that included national regional and pathology checks. The nursery was evaluated at 25 locations across India under different-agro ecological zones. The frequency distribution of disease scores and the representative location severity index (LSI) are presented in the Table 1.1A. The screening against leaf blast was carried out under both natural and artificial inoculation conditions at different locations. The highest disease pressure was recorded at Lonavala (LSI 7.6) and lowest at Bankura and Maruteru (LSI 2.7). The disease pressure was very high (LSI \geq 7.0) at Lonavala (LSI 7.6); while high disease pressure (LSI 6-7) was recorded at Cuttack (6.6), Jagdalpur (6.3) and Mandya (6.2). Most of the locations recorded moderate disease pressure (LSI 3-6) and that included Hazaribagh (5.9), Gagharghat (5.6), Gangavathi (5.6), Jagtial (5.6), Nawagam (5.6), Pattambi (5.0), Ranchi (5.0), Coimbatore (4.7), Navasari (4.6), Nellore (4.4), IIRR (4.4), Khudwani (4.3), Gudalur (4.1), Wangbal (3.2), Ponnampet (3.1), Mugad (3.1), Karjat (3.0) and Patna (3.0). The disease pressure was low (LSI \leq 3.0) at Bankura and Maruteru and hence data from these centres was not considered for the selection of promising entries.

None of the entries found resistant (SI \leq 3.0) or performed better than resistant check Tetep (SI-2.9), however the entries that scored SI \leq 4.0 were considered as promising and presented in Table 1.1B. The entries included IET Nos. 30593, 30561, 30573, 31054, 29694, 30577, 32064, 29142, 29940, 30020, 31050, 30888, 29696, 29689, 30651, 30233, 28965, 30942, 30740, 29975, 30917, 30235, 30578, 31051 and 30579 (Table 1.1B).

National Screening Nursery-2 (NSN-2)

The nursery consists of 643 lines drawn from initial variety trials (IVTs). These were evaluated at 16 centres under various ecological zones. The disease pressure was highest at Cuttack (LSI 6.9) and the lowest at Wangbal (LSI 2.2). None of the locations showed a very high disease (LSI .7.0); however, the disease pressure was high (LSI 6.0-7.0) at Cuttack (6.9), Jagdalpur (6.3), Mandya (6.3) and Hazaribagh (6.0). Location severity index was moderate (LSI 3.0-6.0) at most of the locations and that included Gagharghat (5.9), Nawagam (5.6), Coimbatore (5.4), Gangavathi (5.4), Pattambi (5.4), Ranchi (5.3), IIRR (4.7), Rewa (4.4), Patna (3.1) and Ponnampet (3.0). The Performance of entries at locations *viz.*, Wangbal (LSI 2.2) and Maruteru (LSI 2.4) were not considered for the selection of best entries, where disease pressure was low (<3.0) (Table 1.2A).

None of the entries found resistant (<3.0) or performed better than resistant check Tetep (SI 2.9), but a few promising entries with low susceptibility index was presented in Table 1.2B and that included IET # 31989, 31068, 31532, 31508, 31597, 31525, 31638, 31552, 31857, 31971, 31533, 31075, 31621, 31715, and 31528.

ICAR-IIRR - AICRPR - Annual Progress Report 2023, Vol.2, Plant Pathology

Table	1.1A:	: Loca	tion s	everi	ty inde	ex (LS	5I) an	d freq	luency	/ distr	ibutio	n of	Leaf	blast	score	s for N	I-NSN	, Kha	rif' 2()23					
										L00	ation/	/Fre qı	uency	ofsco	res (0-	(6									
Score	BNK	CBT	CTK	CDL	T33	ЛNЭ	HZB	וואא	1Db	ıсг	КНЪ	КЛТ	ЛЛЛ	WGD	anm	UTM	ИГВ	SAN	9MN	dNd	PTB	PTN	BCI	вем	MBL
0	19	0	0	0	0	0	0	0	0	0	6	0	0	0	0	10	0	0	0		З	40	0	0	12
-	169	ю	0	4	0	5	0	2	4		3	39	0	16	-	117	0	0	0	65	0	58	9	0	7
2		29	0	22	0	22	6	31	~	0	99	172	0	0	5	88	Э	Э	0	123	19	47	10	12	65
3	156	54	٢	98	0	84	59	115	24	44	67	90	2	370	57	80	14	80	17	56	LT	81	21	56	185
4	0	88	0	154	0	55	48	103	36	0	73	60	9	0	108	80	269	78	61	78	132	101	110	145	147
S	51	118	129	104	300	47	43	58	50	220	117	38	18	38	30	32	107	190	155	73	49	85	137	159	15
9	0	94	0	37	2	48	71	45	91	0	37	9	51	0	29	6	30	63	81	20	57	~	92	57	-
7	29	31	202	5	123	44	118	64	111	110	41	17	104	0	5	10		13	76	7	32	5	33	3	0
×	0	~	0	1	0	25	59	0	70	0	7	-	122	0	55	0	0	2	37	0	30	0	23	0	0
6	Г	0	60	0	L	92	25	0	34	29	9	2	122	0	137	0	0	0	3	0	33	0	0	0	0
Total	432	425	398	425	432	422	432	418	428	404	426	425	425	424	424	426	424	429	430	423	432	422	432	432 .	132
LSI	2.7	4.7	6.6	4.1	5.6	5.6	5.9	4.4	6.3	5.6	4.3	3.0	7.6	3.1	6.2	2.7	4.4	4.6	5.6	3.1	5.0	3.0	5.0	4.5	3.2
SM	Ζ	A	A	Ζ	Z	V	A	A	Z	A	Z	A	Z	Z	A	A	A	Z	A	Z	Z	Z	Z	A	Z
(LSI-Lo	cation S	Severity	Index; 1	V-Natur	al; A-Aı	rtificial)																			Ī

			-						_	_	_	_	_		_		_	_		_						_					a
	*	*(č->) I¶	95	91	91	91	87	87	78	83	91	74	90	83	91	83	83	83	83	86	91	91	87	83	82	91	73	95	26		
		* S =>	21	20	20	20	20	20	7	19	21	17	19	19	21	19	19	19	19	18	21	21	20	19	18	20	16	21	6		
	*	*(E->) I q	59	45	50	41	52	52	44	57	52	52	38	57	39	48	43	43	39	38	39	35	35	30	45	32	27	77	9		
		*£=>	13	10	11	6	12	12	4	13	12	12	8	13	6	11	10	10	9	8	9	8	8	7	10	7	6	17	2		
		IntoT.	22	22	22	22	23	23	6	23	23	23	21	23	23	23	23	23	23	21	23	23	23	23	22	22	22	22	23		
		IS	3.5	3.6	3.6	3.6	3.7	3.7	3.8	3.8	3.9	3.9	3.9	3.9	3.9	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	2.9	6.9		(<u></u> ≤2)
023		МВГ	ю	4	4	7	3	4	7	m	7	с	4	7	с	ю	7	с	3	с	0	3	9	0	3	S	0	б	2	3.2	≤3 and
urif-20		KEW	4	4	З	5	4	4	4	4	5	4	7	5	5	5	З	4	4	4	4	5	5	9	4	4	4	9	5	4.5	scored
, Kha		BCI	5	4	5	4	5	3	5	2	4	4	9	5	З	7	4	5	4	4	5	5	4	5	5	9	9	1	8	5.0	ry had
ease		PTN	з	1	0	0	2	0	2	З	5	0	5	2	5	з	З	4	3	1	3	2	1	0	4	2	0	ı	7	3.0	the ent
st dis		PTB	3	2	3	3	2	4	0	3	2	3	3	4	2	4	4	3	4	3	3	4	3	4	3	4	4	3	6	5.0	where
ıf bla		dNd	1	0	2	2	3	2	1	1	3	3	4	2	2	1	1	2	1	4	2	5	1	5	2	2	4	2	4	3.1	cations
o Lea		Э MN	4	5	5	4	5	L	•	5	5	9	З	7	9	9	4	4	5	5	5	4	5	5	5	5	9	4	8	5.6	o. of lo
N-1 t		SAN	Э	5	4	с	5	3	с	4	с	9	с	ю	с	5	с	4	3	4	9	5	4	4	5	m	9	3	7	4.6	on no
NSI	(6-0	ИГВ	4	4	4	4	4	4	•	4	ς	ς	S	4	4	4	S	4	4	4	4	5	4	4	5	4	4	4	9	4.4	I) base
PI ir	ores (anm	7	З	7	б	3	4	•	ς	ς	9	4	6	4	З	S	4	5	ς	3	9	4	4	3	4	З	3	6	6.2	ndex (F
high	of sc	WCD		С	ŝ		5	б	•	m	m	ς	ς	ω	ς	с	ς	ς	3	ς	3	3	3	3	3	ω	3	1	5	3.1	ising i
and	uency	ΛΝΊ	2	2	×	9	7	L	'	9	2	9	9	2	9	9	2	~	5	2	8	9	9	8	7	2	9	3	6	7.6	**Prom
≤ 4.0)	n/Freq	KJT	7		7	7	1	3	'	7		ς	7	7	7	7		7	2	7	3	2	1	3	2	7	2	2	2	3.0	d ≤3; *
lex (≤	ocation	КНЪ	З	7	7	4	2	2	'	9	4	7	4	7	7	5	ς	7	1	4	5	4	5	0	3	4	2	0	8	4.3	l ≤5 an
y ind	Γ	1CF	S	'	ε	S	5	5	'	۲	Ś	S	'	ς	S	ε	S	S	7	'	5	5	5	7	7	Ś	7	б	6	5.6	scored
tibilit		1D6	ω	4	S	2	1	Э	'	∞	m	7	S	7	4	4	9	m	9	m	5	5	5	7	4	S	9	ю	6	6.3	try has
scep		וואא	З	4	7	4	4	З	'	ω	ω	4	ς	4	4	7	4	7	3	'	3	3	3	2	3	4	4	1	7	4.4	the er
w su		HZB	С	ε	~	4	2	9	9	ω	ω	ω	4	ε	ω	7	ω	ω	9	ω	4	3	4	4	2	m	5	б	8	5.9	where
ith lo		AND	С	S	7	ε	3	3	'	m	4	2	7	ε	S	ε	9	2	3	9	3	1	3	5	2	m	4	5	6	5.6	cations
ies w		T99	S	S	S	S	7	5	ŝ	ŝ	ŝ	2	S	S	S	S	S	2	5	S	5	5	5	5	7	ŝ	5	2	5	5.6	o. of lo
entr		CDF	4	5	4	4	3	З	'	7	4	7	4	С	4	S	4	7	4	4	4	4	3	3	4	4	4	Э	9	4.1	ex; *N
ising		CTK	'	6	'	'	7	5	2	S	6	2	'	2	2	2	2	2	7	2	5	5	6	5	•	'	'	5	6	6.6	ity Ind
Prom		CBL	5	7	5	5	2	ε	'	7	ω	7	5	ω	5	З	ς	4	4	5	5	3	4	4	9	5	4	Э	7	4.7	septibil.
1.1B: l		IET Nº.	30593	30561	30573	31054	29694	30577	32064	29142	29940	30020	31050	30888	29696	29689	30651	30233	28965	30942	30740	29975	30917	30235	30578	31051	30579	Tetep (R)	HR 12 (S)	LSI	(SI-Susc
Tablé	_	P. No.	382	171	383	406	16	377	349	29	13	52	409	317	19	15	132	56	20	302	362	24	295	62	385	401	388	432	419		

ICAR-IIRR - AICRPR - Annual Progress Report 2023, Vol.2, Plant Pathology

3.12

ICAR-IIRR - AICRPR - Annual Progress Report 2023, Vol.2, Plant Pathology

Lable 1.2A:	Locatio	n seven	ty index	(LSI) a	nd trequ	uency di	Stributic	0 n 01 L (eat blast	Scores (-NSN-10	2, Mnari	1 2023			
Conversion of the second						Ĺ	ocation/	Frequen	icy of se	cores (0-	(6					
SCULE	CBT	CTK	GGT	GNV	HZB	IIRR	JDP	UND	MTU	NWG	ANP	PTB	PTN	RCI	REW	WBL
0	0	0	0	0	0	0	1	0	3	0	0	L	73	1	0	1
1	0	0	0	3	0	1	11	0	182	0	171	0	85	10	0	103
2	4	0	0	29	L	5	25	30	124	0	198	12	84	19	23	331
3	54	6	0	132	75	108	59	83	227	2	95	80	131	20	100	158
4	120	0	0	113	80	202	42	121	64	46	46	169	71	131	207	45
5	171	171	383	80	83	172	70	45	23	344	24	76	120	201	232	4
9	144	0	0	51	87	58	96	41	3	58	31	88	99	135	75	1
7	108	310	236	69	188	84	122	3	1	164	32	107	8	61	9	0
8	36	0	0	34	73	0	67	110	0	17	41	57	0	58	0	0
6	0	150	24	116	47	0	140	201	0	2	0	47	0	7	0	0
Total	637	640	643	627	640	630	633	634	627	633	638	643	638	643	643	643
ISI	5.4	6.9	5.9	5.4	6.0	4.7	6.3	6.3	2.4	5.6	3.0	5.4	3.1	5.3	4.4	2.2
Screening	A	A	Z	V	Z	V	Z	V	A	A	Z	Z	N	Z	A	Z
	•															

:0003: L'I' CINSING + f hl LJ . ماند *م*الم L. -• -4 þ . • Table

(LSI-Location Severity Index; N-Natural; A-Artificial)
											_				_				
**	(2- >) I d	93	86	86	79	93	93	79	86	86	86	93	86	71	100	79	100	15	
	*S=>	13	12	12	11	13	13	11	12	12	12	13	12	10	14	11	14	2	
**	(E->) I A	50	50	43	57	50	50	50	50	50	29	43	43	43	36	36	64	×	
	*£=>	7	7	9	~	7	7	Г	7	7	4	9	9	9	S	5	6	1	
	IrtoT	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	13	
	IS	3.6	3.8	3.8	3.9	3.9	3.9	3.9	3.9	3.9	3.9	4.0	4.0	4.0	4.0	4.0	2.9	7.3	
	ВЕМ	3	2	5	2	4	3	9	3	4	9	4	4	4	5	4	5	٢	4.4
	BCI	4	5	9	9	~	4	9	5	9	5	4	9	3	5	5	0	~	5.3
	NTY	-	7	0	7	0	7			З		З	З			0		1	3.1
-9)	PTB	3	4	9	3	4	5	3	3	3	4	4	3	3	5	3	4	~	5.4
res (0	dNd	2	2	2	ю	ю	4	1	1	1	2	2	1	1	3	2	2	1	3.0
f sco	9 MN	7	7	5	5	5	5	5	5	7	4	5	5	9	5	5	4	~	5.6
Icy 0	anm	2	3	2	3	3	3	3	4	4	3	3	2	2	3	2	2	6	6.3
uənba	1Db	3	2	3	2	3	3	2	3	2	2	3	1	4	2	2	3	6	6.3
n/Fre	וואא	3	9	5	4	3	5	4	4	2	4	3	2	2	4	4	1	7	4.7
catio	HZB	4	2	3	2	3	3	3	4	3	4	4	2	4	3	4	3	8	6.0
L_0	ΛΝЭ	4	ю	1	3	3	7	ю	6	3	9	3	5	8	5	5	3	6	5.4
	T33	5	5	5	7	5	5	7	7	5	5	5	5	5	5	7	5	5	5.9
	CLK	5	5	5	7	5	3	5	3	3	5	5	6	L	5	7	5	6	6.9
	CBT	5	5	5	5	5	5	5	3	3	4	8	2	9	2	9	3	7	5.4
	IET No.	31989	31068	31532	31508	31597	31525	31638	31552	31857	31971	31533	31075	31621	31715	31528	(R)	2 (S)	
	Br. No.	6102	5404	3533	3508	3844	3526	4125	3554	5307	5807	3534	5414	4107	4344	3529	Tetep	HR 1	LSI
	P. No.	467	551	96	71	44	89	151	117	424	744	67	561	133	233	92	643	630	

Table 1.2B: Promising entries with low susceptibility index (≤ 4.0) and high PI in NSN-2 to leaf blast, *Kharif* 2023

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> National Screening Nursery-Hills (NSN-Hills)

The National Screening Nursery - Hills (NSN-H) comprised of 86 entries, were evaluated at 11 hill locations across India for their resistance to leaf blast. These entries were screened through natural infection condition at most of the locations except at Cuttack, Karjat and IIRR, where entries were screened under artificial method of inoculation. In Khudwani, natural infection was supplemented by spread of diseased leaves. The frequency distribution of disease scores and location severity indices are presented in Table 1.3A. The disease pressure was very high (LSI <7) at Lonavala (7.8) and it was high (LSI 6-7) at Cuttack (6.7). The disease pressure was moderate (LSI 3-6) at most of the locations such as Imphal (5.6), Almora (5.3), Khudwani (4.4), IIRR (4.2), Uppershillong (3.9), Ponnampet (3.2), Umium (3.2) and Karjat (3.1). The disease pressure very low at Wangbal (2.4), hence data from Wangbal was not considered for selection of best entries.

The selection of best entries was done from the locations where LSI was more than 3 and presented in table 1.3B. None of the entries performed better over resistant check (Tetep SI 2.4); however, only one entry IET# 31420 (SI-3.0) was found resistant (SI \leq 3.0). The entries with SI \leq 4.1 with high PI were considered promising and that included IET # 31422, 31409, 31389, 31403, 31405, 31429, and 31388 (Table 1.3B).

				Locatio	on/Free	quency	ofscore	es (0-9)			
Score	ALM	CTK	IIRR	dWI	ЦЛ	KHD	LNV	dNd	MMU	OSU	WBL
0	0	0	0	0	0	2	0	0	0	0	5
1	0	0	1	0	11	1	0	26	4	12	8
2	0	0	7	0	27	5	0	18	16	16	30
3	10	1	27	10	21	18	1	3	31	6	34
4	11	0	21	10	9	18	0	12	25	14	9
5	36	27	15	33	7	24	1	13	9	19	0
6	6	1	0	4	2	9	5	4	0	10	0
7	15	40	12	13	3	5	24	3	0	5	0
8	2	0	0	4	1	3	32	5	0	3	0
9	3	17	2	10	2	1	21	0	0	0	0
Total	83	86	85	84	83	86	84	84	85	85	86
LSI	5.3	6.7	4.2	5.6	3.1	4.4	7.8	3.2	3.2	3.9	2.4
Screening	Ν	Α	Α	Ν	Α	N/A	Ν	Ν	Ν	Ν	Ν

Table 1.3A: Location severity index (LSI) and frequency distribution of leaf blast scores of NSN-H, *Kharif* 2023

(LSI-Location severity Index; N-Natural; A-Artificial)

	**(&->) I¶	89	80	06	06	06	06	70	06	100	30	
	* S =>	8	×	6	6	6	6	7	6	10	e	
~	**(E->) I¶	67	50	50	40	40	40	50	30	80	10	
if 202.	*£=>	9	S	S	4	4	4	S	3	8	1	
t, Khai	IntoT	6	10	10	10	10	10	10	10	10	10	
if blast s (0-9)	IS	3.0	3.6	3.8	3.8	4.0	4.0	4.1	4.1	2.4	6.7	
l to lea score	ÐSN	1	1	4	2	5	2	1	1	2	7	3.9
ncy of	NMU	2	4	3	1	2	3	3	4	1	5	3.2
PI in I reque	dNd	1	1	2	1	2	1	1	1	3	~	3.2
l high ation/F	ЛИЛ	6	7	7	6	~	7	7	8	3	7	7.8
<u>.1) and</u> Loc	КНЪ	2	2	3	4	5	4	4	5	0	~	4.5
x (<=4	LLN	2	2	2	2	1	3	1	3	1	ю	3.1
y inde	ИМ	ı	4	4	5	5	5	6	5	3	5	5.7
ptibilit	ивв	ю	3	ю	4	4	5	5	4	1	6	4.2
' susce	CTK	5	7	5	5	5	5	7	5	5	6	6.7
ith low	МЛА	5	5	5	5	ю	5	ю	5	5	9	5.3
ng entries w	IET No.	31420	31422	31409	31389	31403	31405	31429	31388	p (R)	2 (S)	
B: Promisir	Br. No.	2603	2606	2513	2312	2506	2508	2701	2311	Tetel	HR 1	LSI
Table 1.3	P. No.	56	59	45	23	38	40	67	22	86	73	1

> National Hybrid Screening Nursery (NHSN)

One hundred and twenty hybrids that included checks were evaluated at 23 locations against leaf blast disease under NHSN. The frequency distribution of disease scores and the representative location severity index (LSI) are presented in the Table 1.4A. The disease pressure was high (LSI 6-7) at Cuttack (6.6), Lonavala (6.6) and Imphal (6.3). In most of the centres, location severity index was moderate and that included Gagharghat (5.9), Jagdalpur (5.9), Nawagam (5.8), Hazaribagh (5.4), Mandya (5.4), Pattambi (5.4), Ranchi (4.9), Coimbatore (5.0), Nellore (4.5), Khudwani (4.3), Gangavathi (4.3), Rewa (4.3), IIRR (4.2), Uppershillong (3.8), Patna (3.6) and Karjat (3.3). The Performance of entries at Ponnampet, Wangbal, Maruteru and Bankura was not considered for identifying promising entries; where the disease pressure was low (LSI<3.0).

None of the hybrid entries found resistant (SI<3.0) against leaf blast in NHSN; however, entries with SI \leq 4.2 with high PI across the locations considered promising and that included IET# 31435, 31433, 31480, 31469, 31447, 31473, 31442, 31459, 31437, 31438, 31455 and 31474 (Table 1.4B).

Donor Screening Nursery (DSN)

The donor screening nursery comprised of 212 entries including checks were evaluated at 22 locations. The location severity index was high (LSI 6-7) at Lonavala (6.7), Cuttack (6.6) and Gangavathi (6.6). Most of the centres showed moderate disease pressure (LSI 3-6) and that included Jagdalpur (5.9), Almora (5.8), Gagharghat (5.7), Nawagam (5.6), Hazaribagh (5.5), Mandya (5.5), Pattambi (4.8), Uppershillong (4.8), Coimbatore (4.5), Rewa (4.3), Ranch (4.2), Nellore (4.0), IIRR (3.9), Imphal (3.7), Patna (3.5) and Karjat (3.2). The locations *viz.*, Maruteru, Ponnampet and Wangbal were not considered for the selection of promising entries where disease pressure was low (<3.0) (Table 1.5A).

None of the donors showed resistant reaction (SI<3.0), however the donors with severity index less than 4.1 were considered as promising and presented in able 11 and that included RP 6469-89, CB 18577, RBN-2, RNR 31581, RBN-1, RBN-6, CB 18586, NLR 3217, RBN-7, KNM 13525, KNM 13449, KNM 15361 and JGL 3889 (Table 1.5B).

				,				I	ΓC	catio	n/Fre g	luency	7 of sco	ores (0-	(6:								
Score	ВИК	CBL	CTK	TDD	AND	ахн	ивв	dWI	1Db	КНЪ	КJT	ЛЛЛ	ANM	UTM	ИГВ	9 MN	dNd	FTB	ЬLИ	BCI	вем	DS O	МВГ
0	14	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	ю	0	0	0	0	5
1	81	0	0	0	1	0	1	0	0	2	18	0	0	27	0	0	6	0	~	5	0	23	5
2	14	1	0	0	4	0	10	0	9	11	33	0	11	30	0	0	35	-	12	6	9	35	37
3	∞	17	2	0	40	5	42	12	20	21	23	ю	28	49	5	4	61	13	37	5	22	4	56
4	2	27	0	0	41	51	26	5	14	24	16	ю	27	6	58	13	14	37	40	20	39	∞	17
S	0	32	32	72	12	10	16	39	12	32	16	17	4	2	18	42	0	13	18	42	39	13	0
9	0	25	0	0	∞	13	3	4	18	6	7	33	7	1	~	20	0	18	-	21	10	13	0
7	-	16	52	43	3	27	20	33	14	5	5	31	0	0	ю	23	0	11	4	∞	4	13	0
8	0	2	0	0	1	6	0	4	8	9	2	25	16	0	0	16	0	7	0	6	0	10	0
6	0	0	16	5	10	5	1	23	28	3	0	7	27	0	0	2	0	17	0	1	0	0	0
Total	120	120	102	120	120	120	119	117	120	118	120	119	120	118	89	120	119	120	120	120	120	119	120
ISI	1.2	5.0	6.6	5.9	4.3	5.4	4.2	6.3	5.9	4.3	3.3	6.6	5.4	2.4	4.5	5.8	2.7	5.4	3.6	4.9	4.3	3.8	2.6
Screening	Z	A	V	Z	A	Z	A	Ζ	Z	Z	A	Z	A	A	A	A	Z	Z	Z	Z	A	Z	Ζ
(LSI-Location	Severit	y Index	; N-Nati	ural; A	Artificia	1)																	

Table 1.4A: Location severity index (LSI) and frequency distribution of leaf blast scores of NHSN, *Kharif* 2023.

3.18

2, Plant Pathology
Vol.
irt 2023,
Repo
Progress
– Annual
AICRPR
ICAR-IIRR -

×	*(č->) I¶	89	83	83	94	89	89	79	84	79	79	79	78	95	S	
	* S= >	17	15	15	15	17	16	15	16	15	15	15	14	18	1	
×	*(E->) I¶	47	50	50	44	37	33	42	37	37	32	32	50	58	S	
	*£=>	6	6	6	Г	Г	9	×	r	Г	9	9	6	11	1	
	IrtoT	19	18	18	16	19	18	19	19	19	19	19	18	19	19	
	IS	3.5	3.6	3.8	3.8	4.0	4.0	4.1	4.2	4.2	4.2	4.2	4.2	3.4	T.7	
	9 SU	-	1	-	-	7	2	-	б	2	1	5	1	5	8	3.8
	ВЕМ	ю	4	4	4	5	2	5	4	9	9	5	2	5	7	4.3
	BCI	5	5	~	ю	ю	5	2	5	~	9	9	8	1	8	4.9
5	PTN	S	1	ю	4	5	4	ю	ю	5	5	2	3	1	7	3.6
	PTB	4	3	3	3	0	4	4	4	3	9	4	4	2	6	5.4
	SWN	4	4	5	5	5	4	8	9	4	5	9	5	5	6	5.8
(6-	NLR	4	ı	ı	ı	4	4	4	4	9	4	4	-	4	L	4.5
ores (0	ANM	2	3	4	2	3	3	2	3	3	2	4	2	3	6	5.4
of sc	ΛΝΊ	7	7	9	ı	8	5	9	7	8	9	9	5	3	8	6.6
uency	KJT ,	2	1	1	2	1	3	1	2	2	2	2	2	2	3	3.3
/Frequ	КНЪ	0	0	0	5	4	ı	5	2	0	4	3	3	1	L	4.3
cation	1Db	4	3	4	5	3	3	3	2	3	5	3	3	L	6	5.9
Lo	dMI	ю	9	3	ı	5	7	5	6	5	3	5	5	5	8	6.3
5	ивв	5	ю	Э	3	ю	7	ю	4	2	4	З	3	1	L	4.2
	HZB	4	4	3	5	4	4	9	4	4	4	4	4	3	6	5.5
22 cm	AND	5	3	3	3	7	4	з	2	4	3	4	3	3	6	4.3
	T 33	5	5	5	5	5	5	5	5	5	5	5	7	5	٢	5.9
	CTK	7	٢	Г	5	5	5	Г	5	5	3	5	6	5	6	6.6
	CBL	з	5	5	9	4	9	5	5	4	5	9	9	3	٢	5.0
S	IET No.	31435	31433	31480	31469	31447	31473	31442	31459	31437	31438	31455	31474	p (R)	12 (S)	
	Br. No.	2805	2802	3012	2930	2902	3003	2813	2919	2807	2808	2914	3004	Tetel	HR 1	ISI
	P. No.	5	2	79	99	20	70	13	46	7	8	41	71	120	107	

Table 1.4B: Promising entries with low suscentibility index (< 4.2) and high PI in NHSN to leaf blast. *Khurif* 2021.

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ;**Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

VALUAR DIARY SCORES (0-9) LOCATION/FEQUENCY OF SCORES (0-9) LOCATION/FEQUENCY OF SCORES (0-9) ITA MN M	2.7 4.0 5.6 2.4 4.8 3.5 4.2 4.3 4.8 2.7	A A N N N A N N N A
IRR IRR IR V IRR IR V IRR	2.7 4.0 5.6 2.4 4.8 3.5 4.2 4.3 4.8	A A N N N N A N
Induction Frequency of scores (0-9) Name of scores (0-9) Location/Frequency of scores (0-9) NTU R NTU R NTU R NTU R 0<	2.7 4.0 5.6 2.4 4.8 3.5 4.2 4.3	A A N N N N A
Image: Second	2.7 4.0 5.6 2.4 4.8 3.5 4.2	A A N N N N N
Image: Second	2.7 4.0 5.6 2.4 4.8 3.5	A A N N N N
Induction Induction <t< th=""><td>2.7 4.0 5.6 2.4 4.8</td><td>A A N N</td></t<>	2.7 4.0 5.6 2.4 4.8	A A N N
Location/Frequency of scores (0-9) Location/Frequency of scores (0-9) 0	2.7 4.0 5.6 2.4	A A N
RR Indication/Frequency of scores (0-9) Indication/Frequency of scores (0-9) Indication/Frequency of scores (0-9) Indication/Frequency of s	2.7 4.0 5.6	A A A
Induction and location/Frequency of scores (0-9) Induction/Frequency of scores (0-9) Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction Induction <t< th=""><td>2.7 4.0</td><td>A</td></t<>	2.7 4.0	A
Requercy usation/Frequency of scores Location/Frequency of scores 0 0 0 0 0 0 0 1 0 1 22 0 0 24 2 26 2 5 73 0 13 52 4 24 27 37 13 24 28 8 46 26 1 97 37 13 24 28 8 46 26 1 97 37 13 24 28 8 46 26 1 97 33 64 29 18 26 15 4 97 33 64 29 18 26 15 4 97 33 64 29 18 26 15 4 97 23 0 52 17 58 1 0 1 1 0 23	2.7	▼
Induction Induction <t< th=""><td>1</td><td> 1</td></t<>	1	1
Induction Induction Induction Induction Induction Induction Induction 0 0 0 0 0 0 1 0 1 22 0 0 26 2 5 73 0 0 37 13 24 28 8 26 23 64 29 18 26 26 23 0 52 17 58 26 23 0 52 17 58 26 23 0 52 17 58 26 23 0 52 17 58 26 23 0 52 17 58 26 20 15 0 43 14 14 1 0 25 1 14 14	5.5	A
Incution Location/Fre Location/Fre Location/Fre 1 0 0 0 0 1 0 1 22 5 73 26 2 5 73 8 5 73 37 13 24 28 32 5 17 23 64 29 18 8 5 32 5 17 23 0 52 17 23 5 17 23 0 17 23 17 23 23 5 5 17 23 23 5 17 23 23 5 17 23 23 5 17 23 21 23 25 17 23 21 23 25 17 20 21 20 21 20 21 20 21 21 21 21 21 21 21 21 21 21 <td< th=""><td>6.7</td><td>Z</td></td<>	6.7	Z
IIIRR Locati 0 0 0 1 0 1 26 2 5 37 13 24 23 64 29 8 5 32 23 0 52 23 0 52 23 0 52 23 0 52 23 0 52 23 0 52 23 0 52 23 0 52	3.2	A
203 212 0 <td>5.9</td> <td>Z</td>	5.9	Z
203 1 2 2 3 3 7 2 6 1 0 118 R	3.7	Z
	3.9	A
All Comparison HZB Comparison Comparison <thcomparison< th=""> Comparison</thcomparison<>	5.5	Z
CON CAV 0 0 10 10 15 12 202 202	6.6	A
TDD 0 0 0 0 0 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	5.7	Z
212 39 0 0 8 0 0 8 0 1 2 1 2 1 2 1 2 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	6.6	P
Z05 0 0 0 CBT Number of the second	4.5	A
MLM 0 0 0 MLM 205 205 205	5.8	Z
Contract Score 9 9 2 1 0 Score	ISI	Screening

Table 1.5A: Location severity index (LSI) and frequency distribution of leaf blast scores of DSN. *Khurif* 2023

(LSI-Location Severity Index; N-Natural; A-Artificial)

2
golo
Dath
unt]
Plc
ol.2,
2°.
202
Report
Progress
– Annual
- AICRPR
ICAR-IIRR

		(<->)14	6	4	6	0	4	5	4	6	4	4	4	5	4	4	7		1
	**		×.	ò	×.	10	ò	6	ò	δ.	6	ò	ò	6	ò	8	3		
		* S =>	17	16	17	15	16	18	16	17	17	16	16	18	16	16	9		
	**	(£->) I¶	47	42	37	33	42	37	58	47	33	42	42	32	32	37	S		
		*£=>	6	×	7	S	8	7	11	6	9	8	8	9	9	٢	1		
		letoT	19	19	19	15	19	19	19	19	18	19	19	19	19	19	19		
		IS	3.8	3.9	3.9	3.9	3.9	3.9	4.0	4.0	4.0	4.1	4.1	4.1	4.1	4.0	6.5		and ≤ 5)
23.		DSU			3	-	4	4	2	2	4	4	4	3	4	2	7	4.8	red ≤ 3
if 201		BEW	9	4	Э	5	3	4	m	с	5	4	2	5	4	4	5	4.3	had sco
Khai		BCI	2	5	1	5	2	5	5	5	С	3	3	1	5	3	5	4.2	entry
olast,		NTY	2	9	-	3	1	3	2	3	2	0	1	5	0	4	7	3.5	here the
leaft		PTB	3	3	4	3	3	4	3	4	Э	4	3	3	5	3	6	4.8	ions w
SN to		JWN	4	5	5	5	4	5	5	4	4	4	5	4	6	4	6	5.6	of locat
in DS	(6-0)	NLR	5	2	4	ı	4	4	4	2	4	7	4	4	5	4	5	4.0	on no.
h PI	cores	anm	3	2	4	ı	3	4	ŝ	4	4	4	9	4	4	2	6	5.5	based
d hig	ofs	ΛΝΊ	9	٢	9	5	7	∞	9	5	∞	7	7	6	8	9	5	6.7	ex (PI)
l) an	ency	KJT	2	2	1	2	1	2	3	3	2	2	3	4	1	4	7	3.2	ing ind
(≤ 4.]	requ	1Db	5	2	4	4	5	c	c	1	e	5	4	4	4	3	6	5.9	Promis
ndex	tion/I	dWI	3	5	5	3	3	3	3	3	5	3	5	3	3	3	3	3.7	1<3;**
lity iı	Loca	וואא	2	4	4		4	С	С	5	ī	2	2	2	3	2	7	3.9	≤5 and
ptibil		HZB	5	3	3	•	3	2	З	ю	2	3	3	4	3	4	7	5.5	scored
susce		ΛΝЭ	5	3	6	4	7	4	9	6	5	3	3	4	4	4	7	6.6	try has
low		T33	5	5	5	5	7	5	5	5	5	5	5	5	5	7	7	5.7	the en
with		CLK	5	7	5	5	5	5	6	7	5	6	5	5	7	7	7	6.6	where
ntries		CBT	3	4	3	4	5	5	ю	5	4	5	5	3	4	5	4	4.5	cations
ng er		WIA	5	4	4	5	4	5	5	Э	4	3	7	5	3	5	7	5.8	o. of lo
1.5B: Promisin		Designa- tions	RP 6469-89	CB 18577	RBN-2	RNR 31581	RBN-1	RBN-6	CB 18586	NLR 3217	RBN-7	KNM13525	KNM13449	KNM15361	JGL3889	Tetep (R)	HR 12 (S)	ISI	ptibility Index; *N
Table		P. No	134	139	25	125	24	29	141	165	30	2	12	5	19	121	185		(SI-Susce

3.21

***** TRIAL No.2: SCREENING FOR NECK BLAST RESISTANCE

> NSN-1

During *Kharif* 2023, the National Screening Nursery-1 (NSN-1) for neck blast disease was evaluated at 10 locations across India with 432 entries. The entries were screened under natural conditions in all the centres except at Mandya, Nellore and Rajendranagar, where artificial method of screening was followed. The frequency distribution of disease scores and location severity indices are presented in Table 2.1A. None of the centres showed very high (LSI >7.0) location severity index. The highest location severity was observed in Mandya (6.5) while the lowest at Karaikal (0.8). The disease pressure was high (LSI 6-7) at and Mandya (6.5), while it was moderate (LSI 3-6) at Jagdalpur (5.0), Nawagam (5.0), Ponnampet (3.7), Nellore (3.5) and Rajendranagar (3.4). The disease pressure at Lonavala (2.4), Malan (2.0), Bankura (1.0) and Karaikal (0.8) was very low and hence this centre was not considered for selection of best entries.

The selection of promising entries was done based on the data of those locations where LSI was more than 3 and presented in Table 2.1B. Entries which scored SI \leq 3.2 was considered and that included IET # 29560, 30252, 29808, 29820, 32065, 31120, 30918, 28965, 30021, 30772, 30907, 29696, 30830, 30757 and 29891 (Table 2.1B).

> NSN-2

A total of 643 entries were evaluated under NSN-2 at five different locations during *Kharif* 2023. The screening was done under natural infection condition at all the locations except at Mandya. The location severity index and frequency distribution of scores presented in the Table 2.2A indicated that, none of the locations showed very high (LSI \geq 7) disease pressure; however, it was high (LSI 6-7) at Mandya (6.3). The locations with moderate disease pressure (LSI 3-6) included Jagdalpur (5.3), Nawagam (5.1), and Ponnampet (4.0). The selection of promising entries was done based on the data of all the locations except from Malan where disease pressure was very low.

The entries that had shown low disease scores (≤ 3.5) across the locations were listed in Table 2.2B and that included IET# 31924, 31681, 31683, 31710, 31835, 31820, 31616, 31821, 31836, 31974, 31719, 31827, 31868, 31525, 31987, 31595, 31521, 31754, 31774, 31895, 31505, 31507, 31509, 30684, 31676 and 31817.

≻ NSN-H

A total of 86 entries were evaluated under NSN-hills nursery at six different locations across India under hill ecosystem. The entries were screened under natural infection condition at all the locations. The location severity index and frequency distribution of scores were presented in the Table 2.3A. The disease pressure was moderate (LSI 3-6) at Gudalur (5.2), Almora (4.7), Ponnampet (4.2) and Imphal (4.0). The disease pressure was low at Malan (2.6) and Lonavala (1.8) and hence the data was not considered for selection of promising entries.

The entries found resistant and which performed on par with resistant check Tetep (SI 3.0) were IET# 31420, 31423, 31412, 31416 and 31428. Other promising entries with SI \leq 3.7 with high PI were found moderate resistance to neck blast and with was listed in Table 2.3B.

Table 2.1A: Locat	tion severity	r index (LSI)	and freque	ncy distribut	ion of Neck	blast scores	of NSN-1, /	Kharif 2023		
U S				Loca	tion/Freque	icy of score	s (0-9)			
Score	BNK	dQf	KRK	LNV	MLN	UND	NLR	DWN	ANP	RNR
0	195	22	283	0	0	0	0	0	3	12
1	152	15	69	150	132	0	29	0	58	113
2	0	0	0	7	166	0	0	0	0	0
3	69	61	62	247	125	5	270	94	208	135
4	0	0	0	0	0	32	0	1	0	0
S	10	205	15	24	0	158	108	235	105	131
9	0	0	0	0	0	0	0	0	0	0
7	9	114	3	0	0	109	10	100	40	34
8	0	0	0	0	0	0	0	0	0	0
6	0	11	0	0	0	120	0	0	8	3
Total	432	428	432	425	423	424	417	430	422	428
ISI	1.0	5.0	0.8	2.4	2.0	6.5	3.5	5.0	3.7	3.4
Screening	Ν	N	Ν	Ν	N	V	Ψ	Ν	Ν	\mathbf{A}

(LSI-Location severity Index; N-Natural; A-Artificial)

3.23

	**(5	;->) IA	100	100	100	100	100	83	100	100	100	100	83	100	100	100	100	83	100	100	100	0	100	
	¥	S= >	9	9	9	9	9	S	9	9	9	9	S	9	9	9	9	S	9	9	9	0	9	
)23	**(8	;->) Id	67	100	67	67	67	50	83	83	83	83	83	67	67	67	67	67	50	50	50	0	67	
Tharif 20	¥	<=>	4	9	4	4	4	e	S	S	S	S	S	4	4	4	4	4	e	e	3	0	4	
t blast, <i>K</i>	la	зоT	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	
to Neck		IS	2.5	2.7	2.8	2.8	2.8	2.8	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.2	3.2	3.2	3.2	3.2	7.3	3.7	
NSN-1		вив	1	1	0	1	1	0	3	c,	1	1	1	c,	1	1	3	3	0	1	1	L	3	3.4
gh PI in	cy	dNd	1	3	1	1	1	0	3	1	3	3	3	1	1	1	3	1	1	3	1	L	3	3.7
) and hi	Frequen es (0-9)	9MN	3	3	3	4	3	5	3	e	5	3	3	5	5	3	5	5	5	5	5	L	3	5.0
× (≤3.2)	of scor	ИГВ	5	3	3	3	3		3	n	3	3	3	e	3	3	3	3	с С	1	3	L	3	3.5
lity inde	ΓC	anm	5	3	5	5	4	4	5	5	3	5	L	5	5	5	4	L	5	4	4	6	5	6.5
sceptibi		JDb	0	ε	5	e	5	L	1	m	3	ĉ	1		3	5	1	0	5	5	5	L	5	5.0
ntries with low su		IET No.	29560	30252	30245 (R)	80867	29820	32065	29410 (R)	31120	29264 (R)	30918	59682	30021	30772	20608	96967	30830	30757	29217 (R)	16862	IR 12	letep	
: Promising en		Br. No.	5718	5605	5722	3603	3606	4246	4411	6008	4005	4519	3308	4408	4002	4520	3307	5111	3915	3621	4203	Ľ.		ISI
Table 2.1B:		P. No.	114	60	118	201	204	350	49	84	223	293	20	46	220	294	19	10	197	218	309	419	432	

suscentibility index (<3.2) and high PI in NSN-1 to Neck blast Kharif 2003with lo - materia Serie Since

ICAR-IIRR - AICRPR - Annual Progress Report 2023, Vol.2, Plant Pathology

 $(SI-Susceptibility Index, *No. of locations where the entry has scored <math>\leq 5$ and $\leq 3, **Promising index (PI)$ based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

Plant Pathology
Vol.2,
Report 2023,
ual Progress
-Ann
AICRPR
ICAR-IIRR -

		dNd	0	55	1	313	0	189	0	89	0	12	638	4.0	Ν
	(6-0)	D MN	0	0	0	126	0	337	3	165	0	2	633	5.1	Ν
	tion/Frequency of scores	MND	0	0	0	3	44	230	0	206	0	151	634	6.5	Α
monor foundant	Loca	MLN	0	222	225	196	0	0	0	0	0	0	643	2.0	Ν
mun (- ~) wanter faits in		dQf	44	14	0	47	0	280	0	224	0	24	633	5.3	Ν
	Control	2000	0	1	2	3	4	5	9	7	8	6	Total	ISI	Screening

Table 2.2A: Location severity index (LSI) and frequency distribution of Neck blast scores of NSN-2, *Kharif* 2023.

(LSI-Location severity Index; N-Natural; A-Artificial)

	D		•		~)				\$		
				Location/l of scor	Frequency es (0-9)		19	[RJ	*E=	**({ I	*S=	**(§ Ie
P. No.	Br. No.	IET No.	dOL	UNM	NWG	ANA	5	οT	=>	≥->) I	=>	;->) I
500	5005	31924	0	5	3	1	2.3	4	3	75	4	100
196	4307	31681	0	4	3	3	2.5	4	3	75	4	100
198	4309	31683	0	5	3	3	2.8	4	3	75	4	100
226	4337	31710	0	5	б	б	2.8	4	3	75	4	100
297	4945	31835	0	5	3	3	2.8	4	3	75	4	100
281	4929	31820	0	7	3	1	2.8	4	3	75	3	75
127	4101	31616	1	5	3	3	3.0	4	3	75	4	100
282	4930	31821	1	5	5	1	3.0	4	2	50	4	100
298	4946	31836	0	4	5	3	3.0	4	2	50	4	100
448	5811	31974	1	5	5	1	3.0	4	2	50	4	100
237	4348	31719	0	7	3	3	3.3	4	3	75	3	75
289	4937	31827	0	7	3	3	3.3	4	3	75	3	75
566	5419	31868	0	7	3	3	3.3	4	3	75	3	75
89	3526	31525	3	4	5	1	3.3	4	2	50	4	100
464	5827	31987	0	5	5	3	3.3	4	2	50	4	100
42	3842	31595	3	5	3	3	3.5	4	3	75	4	100
85	3522	31521	3	5	3	С	3.5	4	3	75	4	100
337	4622	31754	3	5	3	3	3.5	4	3	75	4	100
359	4644	31774	3	5	3	3	3.5	4	3	75	4	100
385	5507	31895	3	5	3	3	3.5	4	3	75	4	100
68	3505	31505	5	5	3	1	3.5	4	2	50	4	100
70	3507	31507	5	5	3	1	3.5	4	2	50	4	100
72	3509	31509	5	5	3	1	3.5	4	2	50	4	100
129	4103	30684	1	5	5	3	3.5	4	2	50	4	100
191	4302	31676	1	5	5	3	3.5	4	2	50	4	100
278	4926	31817	0	5	9	3	3.5	4	2	50	3	75
643	Τ¢	step	3	5	3	1	3.0	4	3	75	4	100
630	Η	R 12	7	9	7	1	6.0	4	1	25	1	25

Table 2.2B: Promising entries with low susceptibility index (≤3.5) and high PI in NSN-2 to Neck blast, *Kharif* 2023

ICAR-IIRR - AICRPR - Annual Progress Report 2023, Vol.2, Plant Pathology

LSI5.36.55.14.0(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 3 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

Saara		Loca	tion/Frequer	ncy of score	s (0-9)	
Score	ALM	GDL	IMP	LNV	MLN	PNP
0	0	0	0	0	0	0
1	0	1	0	54	30	13
2	0	0	0	0	1	0
3	32	14	49	29	28	27
4	0	0	0	0	2	0
5	32	49	29	2	12	28
6	0	0	0	0	1	0
7	14	19	6	0	0	13
8	0	0	0	0	0	0
9	2	3	0	0	0	3
Total	80	86	84	85	74	84
LSI	4.7	5.2	4.0	1.8	2.6	4.2
Screening	N	Ν	N	N	N	N

Table 2.3A: Location severity index (LSI) and frequency distribution of Neck blast scores of NSN-H, *Kharif* 2023

(LSI-Location severity Index; N-Natural; A-Artificial)

Table 2.3B: Promising entries with low susceptibility index (<=4.0) and high PI in NSN-H to neck blast, *Kharif* 2023

					Lo	cation/l	Freque	ncyofs	cores (0-9)		
P. No.	Br. No.	IET No.	ALM	GDL	IMP	PNP	IS	Total	<=3*	PI (<-3)**	*5=>	PI (<-5)**
56	2603	31420	3	3	-	3	3.0	3	3	100	3	100
60	2607	31423	3	3	3	3	3.0	4	4	100	4	100
48	2516	31412	3	5	3	1	3.0	4	3	75	4	100
52	2520	31416	3	5	3	1	3.0	4	3	75	4	100
66	2613	31428	3	3	5	1	3.0	4	3	75	4	100
25	2314	31391	3	3	5	3	3.5	4	3	75	4	100
29	2318	31395	3	3	5	3	3.5	4	3	75	4	100
36	2504	31402	3	5	3	3	3.5	4	3	75	4	100
59	2606	31422	3	7	3	1	3.5	4	3	75	3	75
34	2502	31400	5	1	3	5	3.5	4	2	50	4	100
54	2601	31418	5	5	3	1	3.5	4	2	50	4	100
62	2609	31425	5	3	5	1	3.5	4	2	50	4	100
51	2519	31415	-	5	3	3	3.7	3	2	67	3	100
86	Te	etep	3	3	3	3	3.0	4	4	100	4	100
73	HF	R-12	-	9	3	9	7.0	3	1	33	1	33
	LSI		4.7	5.2	4.0	4.2						

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ;**Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> NHSN

The National Hybrid Screening Nursery (NHSN) was evaluated for their resistance to neck blast at eight hot spot locations. The entries were screened by natural infection conditions at most of the locations except at Mandya and Rajendranagar where artificial method of screening was followed. The frequency distribution of disease score and location severity index (LSI) are presented in the Table 2.4A. The disease pressure was highest at Mandya (LSI 6.0) while it was lowest at Bankura (0.2). The disease pressure was moderate (LSI 3-6) at most of the locations and that included Nawagam (5.7), Jagdalpur (5.4), Malan (5.0) and Imphal (4.3). The disease pressure was low (LSI \leq 3.0) at Lonavala (2.3), Rajendranagar (2.6), and Bankura (0.2) and hence performance of entries from these centers was not considered for selecting the promising entries.

Based on the performance of entries across the five locations, entries *viz.*, IET# 31490, 31489, 31475, 31469,31492, 31452, 31466, 31473, 31464 and 31496 were found promising (Table 2.4B).

Score			Locatio	n/Frequen	cy of sco	res (0-9)		
Score	BNK	IMP	JDP	LNV	MLN	MND	NWG	RNR
0	103	0	0	0	0	0	0	2
1	15	0	2	43	6	0	0	48
2	1	0	0	0	12	0	0	0
3	1	59	13	77	16	5	16	45
4	0	0	0	0	4	25	0	0
5	0	41	66	0	2	40	46	20
6	0	0	0	0	23	0	0	0
7	0	17	35	0	4	22	58	4
8	0	0	0	0	1	0	0	0
9	0	0	4	0	15	28	0	0
Total	120	117	120	120	83	120	120	119
LSI	0.2	4.3	5.4	2.3	5.0	6.0	5.7	2.6
Screening	Ν	Ν	Ν	Ν	Ν	Α	Ν	Α

 Table 2.4A: Location severity index (LSI) and frequency distribution of neck blast scores of NHSN, *Kharif* 2023

(LSI-Location severity Index; N-Natural; A-Artificial)

			Loc of s	ation score	/Freq s (0-9	uency)	у		I	*	**()	*	**()
P. No.	Br. No.	IET No.	IMP	JDP	MLN	MND	NWG	SI	Tots	<=3	PI (<-3	S=>	PI (<-5
92	3025	31490	3	3	-	4	3	3.3	4	3	75	4	100
90	3023	31489	3	1	-	7	3	3.5	4	3	75	3	75
73	3006	31475	3	5	-	3	5	4.0	4	2	50	4	100
66	2930	31469	-	5	3	4	5	4.3	4	1	25	4	100
94	3027	31492	3	5	-	4	5	4.3	4	1	25	4	100
36	2909	31452	5	3	6	5	3	4.4	5	2	40	4	80
63	2927	31466	5	5	3	4	5	4.4	5	1	20	5	100
70	3003	31473	5	7	1	4	5	4.4	5	1	20	4	80
61	2925	31464	5	5	-	3	5	4.5	4	1	25	4	100
99	3105	31496	5	5	-	5	3	4.5	4	1	25	4	100
27	Те	etep	3	5	2	7	5	4.4	5	2	40	4	80
29	H	R 12	5	5	4	9	7	6.0	5	0	0	3	60
	LSI		4.3	5.5	5.0	6.0	5.7						

Table 2.4B: Promising entries with low susceptibility index (\leq 4.5) and high PI in NHSN to Neck blast, *Kharif* 2023.

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ;**Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> DSN

The Donor Screening Nursery (DSN) was evaluated for resistance to neck blast at seven locations across India. The entries were screened under natural infection condition at all the locations except at Mandya and Rajendranagar; where artificial method of screening was followed. The frequency distribution of disease scores and location severity index (LSI) were presented in Table 2.5A. The location severity index was high (LSI 6-7) at Mandya (6.1); while it was moderate (LSI 3-6) at Jagdalpur (5.5), Nawagam (5.1) and Rajendranagar (3.1). The selection of promising donors in DSN was done based on the reaction at those locations where LSI was \geq 3.0, accordingly data from Imphal, Lonavala and Malan was not considered.

Based on the performance of entries across the four locations, the list of promising donors presented in Table 2.5B and that included VP-R262-SHB, VP-D6-SHB, VP-D8-SHB, VP-D9-SHB, CB 20166, VP-R45-SHB, NLRBL-8, VP-R243-SHB, WGL 14, VP-R107-SHB, VP-R109-SHB, 4857, VP-D5-SHB, 19451, RP-Patho-12, CR1014, NLRBL-5, and 4917.

G		L	ocation/Fre	equency of	f scores (0-	9)	
Score	IMP	JDP	LNV	MLN	MND	NWG	RNR
0	0	8	0	0	0	0	8
1	68	2	97	84	0	0	64
2	0	0	1	94	0	0	0
3	117	10	111	34	20	42	67
4	0	0	0	0	45	0	0
5	27	115	0	0	49	113	47
6	0	0	0	0	0	0	0
7	0	61	0	0	29	51	22
8	0	0	0	0	0	0	0
9	0	12	0	0	62	2	0
Total	212	208	209	212	205	208	208
LSI	2.6	5.5	2.1	1.8	6.1	5.1	3.1
Screening	N	Ν	N	N	A	N	Α

Table 2.5A: Location severity index (LSI) and frequency distribution of Neck blast scores of DSN, *Kharif* 2023

(LSI-Location severity Index; N-Natural; A-Artificial)

Table 2.5B: Promising entries with low susceptibility index (\leq 3.3) and high PI in DSN to Neck blast, *Kharif* 2023

		Locat of sco	tion/Fre ores (0-	equenc 9)	у		al	3*	**	*2	**
P. No.	Design	JDP	MND	NWG	RNR	\mathbf{S}	Tot	Ŭ,	P] (<-3)		P]
75	VP-R262-SHB	0	5	3	1	2.3	4	3	75	4	100
88	VP-D6-SHB	0	5	3	1	2.3	4	3	75	4	100
89	VP-D8-SHB	0	5	3	1	2.3	4	3	75	4	100
90	VP-D9-SHB	0	4	3	3	2.5	4	3	75	4	100
145	CB 20166	3	4	3	0	2.5	4	3	75	4	100
92	VP-R45-SHB	3	4	3	1	2.8	4	3	75	4	100
161	NLRBL-8	0	5	5	1	2.8	4	2	50	4	100
72	VP-R243-SHB	-	-	-	3	3.0	1	1	100	1	100
50	WGL 14	5	3	3	1	3.0	4	3	75	4	100
65	VP-R107-SHB	3	3	5	1	3.0	4	3	75	4	100
66	VP-R109-SHB	5	3	3	1	3.0	4	3	75	4	100
204	4857	3	3	5	1	3.0	4	3	75	4	100
87	VP-D5-SHB	1	5	5	1	3.0	4	2	50	4	100
42	19451	5	4	3	1	3.3	4	2	50	4	100
104	RP-Patho-12	5	4	3	1	3.3	4	2	50	4	100
124	CR1014	5	4	3	1	3.3	4	2	50	4	100
158	NLRBL-5	0	7	5	1	3.3	4	2	50	3	75
207	4917	5	-	5	0	3.3	3	1	33	3	100
198	Tetep	5	3	7	3	4.5	4	2	50	3	75
185	HR-12	5	9	5	3	5.5	4	1	25	3	75
	LSI	5.5	6.1	5.1	3.1						

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ;**Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

TRIAL No.3: SCREENING FOR BROWN SPOT RESISTANCE

> NSN-1

The National Screening Nursery (NSN-1) comprised of 432 entries evaluated at 19 locations across India under different-agro ecological Zones. The entries were screened under natural infection conditions at most of the centres except at Coimbatore, Gangavathi, Chinsurah, IIRR, Ludhiana and Pusa; where screening was conducted under artificial inoculation with spore suspension. The frequency distribution of disease scores and the representative location severity index (LSI) are presented in Table 3.1A. The disease pressure was highest at Gangavathi (8.2), while it was lowest at Upper shilling (2.5). The disease pressure was very high (LSI≥7.0) at Gangavathi (8.2), Pusa (7.6), IIRR (7.0); high (LSI 6-7) at Ludhiana (6.3), Hazaribagh (6.0). In most of the centres, the disease pressure was moderate (LSI 3-6) and that included Gudalur (5.8), Chinsurah (5.8), Gagarghat (5.7), Rewa (5.6), Coimbatore (5.4), Chatha (5.3), Jagdalpur (5.3), Khudwani (5.1), Ponnampet (4.7), Sabour (4.5), Lonavala (3.3) and Mugad (3.1). The selection of promising entries was done based on the data of all the locations. None of the entry was found resistant against brown spot disease under NSN-1; however, a few promising entries with low SI (<4.8) across the centres included IET# 29692, 31129, 29549, 30024, 29833, 30233, 29694, 30830, 30752, 30657, 29142, 29405, 32074, 32073, 30178, 32037 and 32040 (Table 3.1B).

> NSN-2

A total of 642 entries including different checks were screened under NSN- 2 at 12 locations across the India for brown spot disease. The entries were screened under artificial inoculation conditions at Coimbatore, Gangavathi, IIRR, Ludhiana and Pusa; while it was under natural infection condition at Chatha, Gagharghat, Hazaribagh, Jagdalpur, Ponnampet, Rewa and Sabour. The frequency distribution of disease scores and the representative location severity index (LSI) are presented in the Table 3.2A. The disease pressure was highest and lowest at Gangavathi (8.0) and Jagdalpur (5.0) respectively. the disease pressure was very high (LSI \geq 7.0) at Ganagavathi and Pusa; high (LSI 6-7) at IIRR (6.9) and Ludhiana; moderate (LSI 3-6) at Coimbatore, Gudalur (5.8), Gagharghat (5.6), Hazaribagh (5.5), Ponnampet (5.5), Rewa (5.4), Sabour (5.4), Chatha (5.1) and Jagdalpur (5.0) (Table 3.2A).

The entries with low SI (\leq 5.2) and high PI across the locations were considered promising and presented in Table 3.2B. None of the entries were found resistant, however some of the promising entries included IET# 31875, 31803, 31075, 31831, 31680, 31822, 31116, 31920, 31911, 31876, 31811, 31838, 31873, 31877, 31879 and 31936.

TAUL VILL	1		<u> </u>	- Vennin			num		IIOM						l'innix	2121			
Crow							Γt	cation	/Frequ	ency	of scor	es (0-9	_						
	BNK	CBT	CHN	CHT	GDL	GGT	GNV	HZB	IIRR	JDP	KHD	LDN	LNV	MGD	PNP	PSA	REW	SBR	USG
0	21	0	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	1	20
1	139	0	1	4	0	0	0	1	0	0	0	0	1	16	18	0	0	55	105
2	0	0	0	0	0	0	0	3	0	11	4	0	13	0	40	0	0	0	125
3	181	43	46	75	14	0	0	18	0	47	75	5	296	370	54	0	ю	131	99
4	0	81	18	0	32	0	0	27	4	59	7	0	104	0	69	1	32	0	48
s	43	94	181	217	128	235	5	95	17	101	261	148	8	38	117	4	158	114	52
9	0	95	24	0	124	128	25	101	139	122	3	0	2	0	67	35	189	0	6
7	39	79	103	109	98	3	81	170	114	87	99	269	0	0	19	117	49	92	0
~	0	33	20	0	29	64	90	17	115	0	1	0	0	0	27	230	1	0	0
6	8	0	39	19	0	0	222	0	42	1	14	8	0	0	12	29	0	28	0
Total	431	425	432	424	425	432	423	432	431	428	426	427	424	424	423	416	432	421	425
ISI	2.9	5.4	5.8	5.3	5.8	5.7	8.2	6.0	7.0	5.3	5.1	6.3	3.3	3.1	4.7	7.6	5.6	4.5	2.5
Screening	Z	A	A	N	Z	N	V	Z	A	Z	Z	A	Z	Z	Z	A	Z	N	Z
(LSI-Location	Severity]	Index; N-	Natural;	A-Artifici	al)										1				

enot scores of NSN-1 Kharif2023 Table 3.1A+1 acation severity index(LSI) and frequency distribution of hm

Plant Pathology
Vol.2,
port 2023,
Progress Re
- Annual
- AICRPR -
ICAR-IIRR -

Г			<u> </u>	-	. – –	-			-	1			-	-			-	-					,	il i
	**	*(č- >) IA	76	76	71	69	65	71	88	76	71	65	69	65	59	76	65	59	71	82	75	41		
		* S= >	13	13	12	11	11	12	15	13	12	11	11	11	10	13	11	10	12	14	12	7		
	* *	(£->) I q	41	35	35	25	47	24	18	35	29	24	31	35	35	29	29	29	24	18	38	12		
		*£=>	7	9	9	4	×	4	e	9	S	4	S	9	9	S	S	S	4	3	9	2		
		lrtoT	17	17	17	16	17	17	17	17	17	17	16	17	17	17	17	17	17	17	16	17		<u>(5)</u>
		IS	4.4	4.5	4.5	4.7	4.7	4.7	4.7	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.5	4.4	6.2		3 and ≤
° - G		SBR	З	З	З	1	З		ς	З	-	Э	З	Э	-	З	З	Э	1	1	7	7	4.5	ored ≤
		ВЕМ	5	4	5	9	9	5	5	5	5	5	9	9	5	5	9	9	9	5	4	9	5.6	/ had sc
		VSd	2	7	9	9	7	9	9	9	2	9	1	9	∞	8	7	7	9	9	ı	6	7.6	ne entry
		dNd	5	З	1	4	5	5	5	4	5	2	5	З	-	4	2	1	4	2	З	2	4.7	vhere tl
		MGD	Э	e	ŝ	e	ŝ	З	5	e	с	ŝ	ŝ	ŝ	с	3	ŝ	ŝ	3	3	1	5	3.1	tions v
	(6-(ЛЛЛ	5	4	4	З	З	4	4	З	З	3	с	4	4	4	с	З	3	4	З	3	3.3	of loca
	res (I	ГDИ	5	5	7	5	7	5	5	3	5	7	5	7	5	5	5	5	5	5	7	5	5.3	on no.
	of sco	аня	3	5	3	7	3	5	2	3	3	5	5	3	5	5	5	5	3	5	3	8	5.1 () based
Ĩ	ncy (AUL	4	3	e	5	3	5	5	5	4	9	7	7	2	2	5	9	4	4	3	5	5.3 5	dex (PI
()	ıənbə	яли	9	9	9	9	5	9	5	~	7	9	9	9	8	7	9	9	5	4	4	8	3 0'	sing in
	on/Fr	gyu		4	2	5	2	2	m	∞	2	9	ŝ	e	2	2	5	2	4		2	8	.0 7	*Promi
	ocatic		` ر	-	, V		~	, V	~	~	, 	2 2		6	, 	` œ	-	` x	, (, /) S	6	.2 6	l ≤3; *;
	L			, ,							, ,		, ,		, ,		` \	50	5	, ,		~	7 8	≤5 and
		T22	4,	4.)	4.)	0	• •	5	41	4.7	4.1	4.)	4.7	4.)	2	4.7			5	4.7	4.)	~	8 5.	scored
2		CDIC	(°,			4)	7		41	43	4)	7		7		4)		43		4) 	43	~	3 5.	try has
		CHT	ς.	2	2	Ś	6	Ś	Ś	S	Ś	S	Ś	Ś	m	m	Ś	ς Ω	2	5	S	5	8 5.	the en
		CHN	5	5	5	5	ŝ	5	5	4	2	5	ŝ	5	ς,	ŝ	ŝ	4	5	5	5	5	4 5.3	where
2		CBL	3	3	4	3	3	7	4	3	5	4) 5	3	2	5	4	4	5	4	3	8	5.4	cations
0		ET No.	9692	1129	9549	0024	9833	0233	9694	0830	0752	0657	<u>9142 (R)</u>	<u>9405 (R)</u>	2074	2073	0178	2037	2040	si	de	(S)		*No. of lo
		0.1	7	S	0	S	7	S	7	S	ς Γ	ς Γ	7	7	ς Γ	ς,	ς,	ς.	3	Rat	Teté	HR 12	SI	Index;
		Br. N	3309	6007	5602	4402	3904	5601	3304	5111	3705	3449	3317	4415	4825	4824	5102	3455	3734			1	Ľ	eptibility
		P. No.	21	83	57	40	186	56	16	10	363	174	29	53	273	272	2	180	391	90	432	419		(SI-Susc

Table 3.1B: Promising entries with low susceptibility index (≤ 4.8) and high PI in NSN-1 to brown spot. *Kharif* 2023

3.33

				Lo	cation/F	requenc	y of sco	ores (0-9)			
Score	CBT	CHT	GGT	GNV	HZB	IIRR	JDP	LDN	PNP	PSA	REW	SBR
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	2	0	0	0	0	1	0	0	0	0	23
2	0	0	0	0	2	0	57	0	23	0	1	0
3	23	127	0	0	28	1	81	13	77	0	2	170
4	87	0	0	1	44	3	100	0	90	0	67	0
5	156	345	400	9	228	44	112	166	130	0	278	186
6	161	0	148	19	212	182	140	0	116	16	255	0
7	138	148	5	180	81	239	142	443	124	221	39	184
8	73	0	85	200	5	147	0	0	63	381	0	0
9	0	10	0	222	0	26	0	18	15	22	1	76
Total	638	632	638	631	600	642	633	640	638	640	643	639
LSI	5.8	5.1	5.6	8.0	5.5	6.9	5.0	6.5	5.5	7.6	5.4	5.4
Screening	A	Ν	Ν	Α	Ν	A	Ν	A	N	Α	Ν	Ν

Table 3.2A: Location severity index (LSI) and frequency distribution of brown spot scores of NSN-2, *Kharif* 2023

(LSI-Location Severity Index; N-Natural; A-Artificial)

> NSN-H

The National Screening Nursery - Hills (NSN-H) was evaluated for their resistance to brown spot at five locations *viz.*, Almora, IIRR, Khudwani, Lonavala and Ponnampet. These entries were screened through natural method in all the locations except at IIRR. The frequency distribution of disease scores and location severity indices are presented in Table 3.3A. The disease pressure was high (LSI 6-7) at IIRR (6.7) and Almora (6.4); moderate (LSI 3-6) at Khudwani (5.7), Ponnampet (4.2) and Lonavala (3.3). Data from all the centres were considered for selection of best entries. None of the entries found resistant against brown spot; however, entries with low SI (\leq 4.6) and high PI across the locations considered promising and they are IET # 31407, 30513, 31387, 29654, 31388, 31389, 31383, 31384, 31399, 31411, 30503, 31385, 31398 and 31405 (Table 3.3B).

> NHSN

One hundred and twenty hybrid entries including checks were evaluated at 13 locations against brown spot disease under NHSN. The highest and lowest disease pressure was recorded at Gangavathi (7.8) and Bankura (2.5) respectively. The disease pressure was high (LSI 6-7) at IIRR (6.8), Pusa (6.7) and Ludhiana (6.2). Most of the centres showed moderate disease pressure *viz.*, Chatha (5.6), Gagharghat (5.6), Khudwani (5.6), Coimbatore (5.2), Rewa (4.9), Chinsurah (4.7), Jagdalpur (4.1) and Lonavala (3.2). The Performance of entries at Bankura was not considered for identifying promising entries, as the disease pressure was low (< 3.0) (Table 3.4A).

The entries with low SI (\leq 5.2) and high PI across the locations were presented in Table 3.4B. None of the entries recorded resistance reaction across the locations however a few promising entries that included IET # 31474, 31464, 31473, 31480, 31442, 31466, 31495, 31498, 31487, 31489, 31449, 31444, 31490, 31460, 31461, 31465 and 31448 (Table 3.4B).

	(2) 11	10	~	10	10	~	~	~	~	~	~	~	~	10	~	4	4		_	10	
* *	(5->) Id	75	.9	55	55	.9	6	28	6	22	22	28	22	75	6	9	9	75	8	25	
	* S= >	6	8	9	9	8	∞	Г	8	7	7	7	7	6	8	7	7	6	8	3	
* *	(E->) IA	33	50	36	36	33	25	25	17	17	17	33	25	8	×	27	6	33	0	0	
	*£=>	4	9	4	4	4	3	3	2	2	2	4	3	1	1	3	1	4	0	0	
	IrtoT	12	12	11	11	12	12	12	12	12	12	12	12	12	12	11	11	12	10	12	
	IS	4.3	4.4	4.8	4.9	4.9	5.0	5.1	5.1	5.1	5.1	5.2	5.2	5.2	5.2	5.2	5.2	4.7	5.1	6.9	
	รยห	1	3	1	3	3	3	3	3	3	1	3	3	5	1	3	1	5	5	5	5.4
	вем	4	5	9	5	5	4	9	4	9	4	5	9	5	5	9	5	2	4	L	5.4
	₩Sd	9	8	7	L	L	7	L	8	9	7	8	7	L	7	L	L	9	7	L	7.6
(6-0)	dNd	3	8	3	3	2	7	3	4	9	4	3	5	4	5	3	4	3	ı	L	5.5
scores	ГDИ	5	3	3	L	L	7	5	5	5	7	5	7	5	5	L	5	7	5	L	6.5
icy of	1D6	7	ю	3	3	4	7	2	7	б	4	7	2	3	4	ю	5	4	1	4	5.0
requen	иян	9	9	7	9	~	5	9	9	5	7	9	7	9	9	5	9	3	4	6	6.9
tion/F	НZВ	5	2	9	9	4	б	5	9	5	5	5	5	4	5	·	5	3	4	7	5.5
Loca	AND	7	9	8		~	7	9	5	9	7	7	~	6	7	5	8	6	7	6	8.0
	TƏƏ	5	S	5	9	S	5	5	5	5	5	~	5	5	5	5		5	5	8	5.6
	CHL	3	-		3	3	5	5	5	7	3	б	ю	5	5	5	7	5	5	5	5.1
	CBL	4	3	4	5	3	5	8	3	4	7	7	4	4	7	8	4	4	5	8	5.8
	IET No.	31875	31803	31075	31831	31680	31822	31116	31920	31911	31876	31811	31838	31873	31877	31879	31936	[45	asi	12 (S)	
	Br No.	5427	4911	5414	4941	4306	4931	5812	5538	5527	5428	4919	4948	5425	5429	5432	5019	CH	R	HR 1	ISI
	P. No.	574	263	561	293	195	283	449	415	405	575	271	300	572	576	579	514	636	632	630	

+ Kh. d high DI in NCN 340 7 . . . tihilit ŕ 44 the second à 2 JD.

3.35

Saoro		Location/	Frequency of s	cores (0-9)	
Score	ALM	IIRR	KHD	LNV	PNP
	0				
1	0	0	0	0	2
2	0	0	0	0	9
3	0	0	4	62	21
4	3	2	8	19	19
5	25	10	36	4	19
6	10	25	9	0	5
7	31	24	18	0	5
8	15	20	10	0	3
9	0	4	1	0	1
Total	84	85	86	85	84
LSI	6.4	6.7	5.7	3.3	4.2
Screening	Ν	Α	Ν	Ν	Ν

Table 3.3A: Location severity index(LSI) and frequency distribution of brown spot scores of NSN-H, *Kharif* 2023

(LSI-Location Severity Index; N-Natural; A-Artificial)

Table 3.3B: Promising entries with low susceptibility index (<=4.6) and high PI in NSN-H to brown spot, *Kharif* 2023

]	Locatio of se	on/Frec cores ((luency)-9)					**		**
P. No.	Br. No.	IET No.	ALM	IIRR	KHD	LNV	PNP	SI	Total	<≡3*	PI (<-3)	*S=>	PI (<-5)
42	2510	31407	4	6	5	3	2	4.0	5	2	40	4	80
3	2403	30513	5	6	5	3	2	4.2	5	2	40	4	80
20	2309	31387	5	6	4	3	3	4.2	5	2	40	4	80
1	2401	29654	5	5	4	3	5	4.4	5	1	20	5	100
22	2311	31388	5	6	5	4	2	4.4	5	1	20	4	80
23	2312	31389	5	6	5	4	2	4.4	5	1	20	4	80
16	2305	31383	7	6	5	3	2	4.6	5	2	40	3	60
17	2306	31384	6	6	5	3	3	4.6	5	2	40	3	60
33	2501	31399	5	6	7	3	2	4.6	5	2	40	3	60
47	2515	31411	6	6	5	3	3	4.6	5	2	40	3	60
7	2407	30503	5	6	5	3	4	4.6	5	1	20	4	80
18	2307	31385	5	7	5	4	2	4.6	5	1	20	4	80
32	2321	31398	5	6	5	4	3	4.6	5	1	20	4	80
40	2508	31405	6	5	5	3	4	4.6	5	1	20	4	80
86	Tete	ep	5	5	5	3	4	4.4	5	1	20	5	100
79	CH-	45	7	4	4	3	4	4.4	5	1	20	4	80
75	Ras	si	5	5	5	3	-	4.5	4	1	25	4	100
77	Vikram	arya	7	8	8	3	8	6.8	5	1	20	1	20
	LSI		6.4	6.7	5.7	3.3	4.2						

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

	_	U		Lo	cation	/Fre qu	iency o	fscore	es (0-9))			
Score	BNK	CBT	CHN	CHT	GGT	GNV	IIRR	JDP	ДНХ	NQT	LNV	VSd	REW
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	27	0	0	0	0	0	0	0	0	0	0	0	0
2	50	0	0	0	0	0	0	16	1	0	0	0	0
3	26	13	29	16	0	0	0	27	16	0	101	2	3
4	1	28	0	0	0	1	2	30	1	0	16	2	32
5	14	32	78	57	68	4	10	25	66	51	2	14	59
6	0	26	0	0	38	8	41	15	0	0	1	21	22
7	0	16	13	40	2	29	36	7	15	69	0	51	3
8	0	5	0	0	11	36	25	0	0	0	0	30	1
9	2	0	0	7	0	40	6	0	19	0	0	0	0
Total	120	120	120	120	119	118	120	120	118	120	120	120	120
LSI	2.5	5.2	4.7	5.6	5.6	7.8	6.8	4.1	5.6	6.2	3.2	6.7	4.9
Screening	Ν	A	A	N	N	A	A	N	Ν	A	N	Α	Ν

Table 3.4A: Location severity index(LSI) and frequency distribution of brown spot scores of NHSN, *Kharif* 2023

(LSI-Location Severity Index; N-Natural; A-Artificial)

> DSN

The entries under donor screening nursery (DSN) were evaluated for their resistance to brown spot at 13 locations with 208 entries across the country. The brown spot resistance screening was done under natural infection conditions in most of the centres except at Coimbatore, Gangavathi, Ludhiana, IIRR and Pusa; where artificial method of screening was followed. The frequency distribution of disease scores and location severity index (LSI) are presented in Table 3.5A. The highest and lowest disease pressure was recorded at Gangavathi (7.9) and Lonavala (3.1) respectively. The disease Pressure was high (LSI 6-7) at IIRR (6.6), Almora (6.3), Gagharghat (6.1); moderate (LSI 3-6) at Ludhiana (5.6), Sabour (5.2), Chatha (5.1), Rewa (5.1), Hazaribagh (4.9), Coimbatore (4.6), Jagdalpur (4.1), and Lonavala (3.1). The promising donor lines with low SI (4.9) and high PI across the locations were presented in Table 3.5B and that included NLR 3595, NLRBL-2, KNM15236, 687-3, NLRBL-7, NLRBL-5, KNM12346, 680-2, RP-Bio-Patho-4, NLRBL-3, RTCNP-138, RP-Bio-Patho-3, NLRBL-9, KNM15361, C101A51, NLRBL-6 and 683-1.

lant Pathology
Vol.2, I
Report 2023,
- Annual Progress
- AICRPR -
ICAR-IIRR

					_							_					-							
	*	*(č->) IQ	75	83	64	75	75	75	67	50	67	67	75	58	67	58	58	75	82	92	58	25		
		~ \$ =>	6	10	٢	6	6	6	8	9	8	8	6	٢	8	٢	٢	6	6	11	٢	3		
23	*	*(£->) I q	33	17	27	25	17	25	17	42	25	17	25	25	17	17	17	8	6	25	25	8		í, ,
<i>uf</i> 20		*£=>	4	7	3	e	7	e	2	S	3	2	3	3	2	2	2	1	1	3	3	1		ŀ
Khai		lrtoT	12	12	11	12	12	12	12	12	12	12	12	12	12	12	12	12	11	12	12	12		-
spot,		IS	4.8	4.8	4.9	4.9	4.9	5.0	5.0	5.1	5.1	5.1	5.2	5.2	5.2	5.2	5.2	5.2	5.2	4.5	5.3	6.8		
rown		вем	5	4	2	5	4	5	4	3	2	2	2	2	4	2	4	5	5	5	3	7	4.9	-
SN to t		₩Sd	5	7	2	5	L	9	L	L	L	9	5	9	L	9	L	9	5	5	9	L	6.7	• •
in NH		ЛЛЛ	3	З	4	З	3	З	3	3	3	4	3	3	3	3	3	З	3	3	3	3	3.2	
gh Pl	(6-0	ГDИ	5	5	L	5	5	5	5	L	5	5	5	5	5	L	L	5	5	L	L	7	6.2	
and hi	cores (I	КНЪ	2	5	I	3	5	3	5	4	7	5	5	5	5	5	5	5	5	5	6	9	5.6	
<=5.2)	ncy of s	1Db	3	2	3	2	5	5	2	3	4	3	9	9	2	3	2	4	5	4	3	7	4.1	
index (Fre que	וואא	9	4	9	7	9	5	2	8	9	9	6	8	L	9	9	5	L	5	2	8	6.8	1101
bility]	cation/l	AND	L	5	L	7	L	∞	2	L	8	8	8	8	8	9	2	7	8	4	L	8	7.8	
uscepti	Lot	T J J	5	∞	9	5	5	5	9	9	5	5	5	9	9	9	9	5		5	9	5	5.6	-
I IOW S		CHT	5	5	3	7	5	5	L	3	5	3	5	3	3	5	5	5	5	3	5	5	5.6	
es with		NHO	Э	5	3	5	3	3	2	3	3	L	3	3	5	2	2	5	5	5	2	L	4.7	
centri		CBL	8	5	5	5	4	7	9	7	3	4	3	4	4	5	7	Δ	4	3	4	8	5.2	
romising		IET No.	31474	31464	31473	31480	31442	31466	31495	31498	31487	31489	31449	31444	31490	31460	31461	31465	31448	ep	45	2 (S)		1 1 F
3.4B: P		BrNo.	3004	2925	3003	3012	2813	2927	3103	3108	3020	3023	2904	2816	3025	2920	2921	2926	2903	Tet	CH	HR 1	ISI	
Lable		S.No.	71	61	70	6L	13	63	76	102	87	06	22	16	92	47	48	62	21	52	113	107		C FC/

: (1) (1) 3 ģ (SI-Susceptibility Index, *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

		-		Lo	cation	/Fre qu	iency o	fscore	es (0-9))			
Score	ALM	CBT	CHT	L99	GNV	ЯZН	IIRR	JDP	NQT	ANT	PSA	REW	SBR
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	3	0	0	0	0	0	1	0	0	0	17
2	0	2	0	0	0	1	0	31	0	5	0	0	0
3	3	33	41	0	0	18	0	55	23	172	0	4	42
4	10	61	0	0	0	52	2	51	0	31	1	47	0
5	63	62	105	75	8	80	19	28	91	1	3	89	68
6	22	46	0	85	15	49	89	26	0	0	18	51	0
7	72	1	49	0	46	12	61	17	75	0	112	7	61
8	38	0	0	52	65	0	35	0	0	0	67	0	0
9	0	0	5	0	72	0	3	0	5	0	5	0	20
Total	208	205	203	212	206	212	209	208	195	209	206	198	208
LSI	6.3	4.6	5.1	6.1	7.9	4.9	6.6	4.1	5.6	3.1	7.2	5.1	5.2
Screening	Ν	Α	Ν	Ν	Α	Ν	Α	Ν	Α	Ν	Α	Ν	Ν

Table 3.5A: Location severity index (LSI) and frequency distribution of brown spot scores of DSN, *Kharif* 2023

(LSI-Location Severity Index; N-Natural; A-Artificial)

	* *	(E->) IA	77	62	69	77	77	69	77	69	69	62	62	54	77	69	69	62	69	75
		* S =>	10	8	6	10	10	9	10	9	6	8	8	7	10	6	6	8	9	6
	* *	(E->) IA	38	54	38	31	31	38	23	15	31	31	23	38	23	23	23	31	23	25
		*£=>	5	7	5	4	4	5	3	2	4	4	3	5	3	3	3	4	3	3
23		lrtoT	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	12
arif 20		IS	4.5	4.5	4.5	4.5	4.5	4.6	4.7	4.7	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.9	4.9	5.0
$0t, Kh_0$		ABR	1	3	1	3	5	3	5	1	5	3	1	7	5	1	1	3	5	5
wn sp		BEW	5	5	4	4	3	3	4	4	7	4	4	6	4	4	5	4	5	5
to bro		VSd	4	9	9	7	5	6	7	9	7	9	7	6	5	7	8	9	7	7
DSN		ЛЛЛ	3	3	3	3	3	3	3	3	3	3	4	3	3	3	3	3	3	3
n PI in	s (0-9)	ГDИ	3	3	3	5	3	5	5	7	3	1	7	3	5	5	5	3	5	3
ld higł	of score	1Db	3	2	2	3	2	2	2	4	3	2	2	2	3	5	2	2	3	3
4.9) an	iency (ивв	5	7	7	5	6	6	5	5	5	7	9	5	5	6	7	6	9	5
'=>) X∂	n/Freq	HZB	5	3	5	5	4	4	5	4	4	4	5	3	4	5	4	5	5	5
ty inde	Locatic	AND	7	6	6	6	8	7	7	5	9	6	7	8	8	7	7	8	7	7
ptibilit		T Э Э	8	8	8	9	9	8	9	9	5	8	9	5	8	8	5	8	9	5
susce		CHT	3	1	3	3	5	3	5	5	3	5	3	3	1	5	5	5	5	7
th low		CBL	9	3	4	5	4	5	3	9	4	4	5	6	5	2	6	4	3	
ries wi		WTV	5	9	4	4	5	5	4	5	7	6	5	6	7	5	5	7	4	5
5B: Promising enti		Designation	NLR 3595	NLRBL-2	KNM15236	587-3	NLRBL-7	NLRBL-5	KNM12346	580-2	RP-Bio-Patho-4	NLRBL-3	RTCNP-138	RP-Bio-Patho-3	NLRBL-9	KNM15361	C101A51	NLRBL-6	583-1	Rasi
Table 3.		P. No.	163 1	155]	9 1	53 (160 1	158 1	14]	52 (108 1	156 1	131 1	107	162 1	5 1	120 (159 1	54 (187 1

LS16.34.65.16.17.94.96.64.15.63.17.25.15.2(SI-Susceptibility Index, *No. of locations where the entry has scored ≤ 5 and ≤ 3 ; **Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

62

8 5

8 ø

, -

13

5.7 6.2

~ \sim

~

 $\boldsymbol{\omega}$ \mathcal{C}

Ś Ś

Ś \sim

 ∞ 6

9 \sim

Ś Ś

S S

HR-12 ISM

185 117

∞ 6

9 S

9 S

5 5

13

38

* TRIAL No.4: SCREENING FOR SHEATH BLIGHT RESISTANCE

> NSN-1

The National Screening Nursery-1 (NSN-1) was evaluated for resistance to sheath blight at 21 locations across India. The entries were screened by artificial inoculation at most of the centres except Patna where the entries were evaluated under natural condition. The highest disease pressure was recorded at Mandya (8.4) and lowest at Bankura (2.8). The frequency distribution of disease scores and location severity indices (LSI) were presented in Table 4.1A. The disease pressure was very high (LSI >7) at Mandya (8.4), Gangavathi (8.1), Ludhiana (7.1), and Cuttack (7.1); high (LSI: 6 - 7), Chiplima (6.9), Chinsurah (6.8), Titabar (6.6), IIRR (6.5), New Delhi (6.5), Maruteru (6.1), Pattambi (6.3), Raipur (6.1), Masodha (6.0), moderate (LSI 3-6) at Navasari (5.9), Kaul (5.7), Moncompu (5.5), Aduthurai (5.5), Pant Nagar (5.0), Varanasi (4.8); and less (LSI <3) at Patna (2.9), Bankura (2.8). The selection of best entries in NSN-1 was done based on the reaction at those locations where LSI was \geq 3. Some of the promising entries with SI \leq 5.2 are presented in the Table 4.1B. None of the entries were found resistant (SI \leq 3.0) against sheath blight disease. Promising entries (SI \leq 5.0) were IET Nos. 30078, 29549, 30827, 30844, 30762 and 30083 were identified as better than tolerant check Tetep.

≻ NSN-2

The National Screening Nursery-2 (NSN-2) was evaluated for its resistance to sheath blight at 17 locations. The entries were screened by artificial inoculation at most of the centres except Patna where the entries were evaluated under natural conditions and observed moderate level of (LSI <2.8) disease severity. The frequency distribution of disease scores and location severity index (LSI) are presented in Table 4.2A. The disease pressure was very high (LSI >7) at Mandya (8.1), Gangavathi (7.8), Cuttack (7.3), and Ludhiana (7.2); high (LSI 6 - 7) at Titabar (6.8), Pattambi (6.4), Masodha (6.0), Maruteru (6.0), IIRR (5.9), Aduthurai (5.6), Kaul (5.6), and moderate (LSI 3-6) at Raipur (5.5), Pant Nagar (5.2), Varanasi (4.9), and Moncompu (5.2); and low (LSI <3) at Patna (2.8). The selection of promising entries in NSN-2 was done based on the reaction at those locations where LSI was \geq 3.0. None of the entries were resistant (SI \leq 3.0) against sheath blight. Some of the promising entries with SI \leq 5.0 are IETs 31682, 31662, 31696, 31687, 31906, 31681, 31836, 31059, and 31553 were found better than tolerant check Tetep are presented in Table 4.2B.

> NSN-H

The National Screening Nursery - Hills (NSN-H) was evaluated for their resistance to sheath blight at Cuttack, IIRR and Pantnagar. These entries were screened through artificial inoculation at all the locations. The frequency distribution of disease scores and location severity indices are presented in Table 4.3A. The disease pressure was very high (LSI >7) at Cuttack (7.3), while it was high (LSI 6-7) at IIRR (6.5) and disease pressure was moderate (3-6) at Pantnagar (4.8). The selection of best entries was done based on the reaction at these three locations. None of the entries were resistant (SI \leq 3.0) against sheath blight. Some of the highly promising entries *viz.*, IETs 31415, 31383 and 31420 were found better than tolerant checks (Tetep) and other few entries viz., IETs 31391, 31401, 31402, 31411, 31421, 30513, 31387 and 31426 were on par with checks (Table 4.3B).

		1	1	<u> </u>	r									
	ЛВИ	0	0	0	136	0	184	0	LL	0	11	408	4.8	A
	LTB	0	0	0	30	0	128	0	166	0	66	423	6.6	A
	КРК	0	0	0	65	0	122	0	187	0	58	432	6.1	A
	NLd	0	147	0	158	0	66	0	18	0	0	422	2.9	Z
	PTB	0	0	0	10	0	173	0	196	0	47	426	6.3	A
	TNA	0	0	0	32	0	357	0	28	0	6	423	5.0	A
	SAN	0	0	0	29	0	191	0	186	0	23	429	5.9	A
	ADL	0	0	0	0	0	112	0	305	0	8	425	6.5	V
s (0-9)	UTM	0	0	0	0	0	182	0	222	0	4	408	6.1	A
fscore	asw	0	0	0	13	0	225	0	147	0	41	426	6.0	A
ency o	anm	0	0	0	0	0	10	0	107	0	307	424	8.4	A
/Fre qu	NNC	28	26	0	45	0	110	0	164	0	58	431	5.5	V
cation	ГDИ	0	0	0	0	0	0	0	397	0	26	423	7.1	V
L_0	KUL	0	0	0	6	0	114	0	85	0		209	5.7	V
	וואא	0	0	0	4	0	114	0	303	0	~	429	6.5	A
	ΛΝЭ	0	0	0	1	0	27	0	141	0	256	425	8.1	A
	CTK	0	7	0	31	0	49	0	179	0	158	424	7.1	A
	СНЬ	0	2	0	27	0	71	0	203	0	116	419	6.9	A
	СНИ	0	0	0	17	0	140	0	143	0	132	432	6.8	A
	BNK	29	126	1	192	0	45	0	28	0	11	432	2.8	A
	TQA	5	10	0	89	0	150	0	108	0	62	424	5.5	V
	Score/ Location	0	1	2	3	4	5	9	L	8	6	Total	ISI	Scree ning

Table 4.1A: Location severity index and frequency distribution of sheath blight disease score for NSN-1 entries, Kharif-2023

(N- Natural; A- Artificial; LSI- Location Severity Index)

-	(S=>) Id S=> (E=>) Id	0 15 75.0	16 76.2	3 65.0	66.7	65.0	70.0	65.0	70.0	65.0	65.0	61.5	66.7	4.8	19.0	94.7	ı
-	S=> (E=>) Id	0 15	16	3				-		-	-	-	-				
	(£=>) Id	0		1	14	13	14	13	14	13	13	8	14	1	4	18	ı
		40.	28.6	40.0	33.3	35.0	30.0	30.0	30.0	30.0	25.0	30.8	19.0	0.0	4.8	21.1	I
-	£=>	8	6	8	7	7	9	9	6	6	5	4	4	0	1	4	ı
	ІвтоТ	20	21	20	21	20	20	20	20	20	20	13	21	21	21	19	I
ſ	IS	4.6	4.7	4.7	4.8	4.9	5.0	5.1	5.1	5.2	5.2	5.2	5.2	7.9	7.1	4.8	ı
	ΛBN	5	3	5	3	3	ю	3	3	3	5	I.	3	7	7	3	4.8
ľ	LLB	S	S	Э	Э	7	5	5	5	3	5	I	3	6	9	5	6.6
	КРК	5	Э	5	5	З	5	7	5	3	5	3	5	7	7	5	6.1
6	NTQ	Э	-	1	1	б	Э	1	3	1	3	I	3	7	5	ı	2.9
-0) sa	PTB	Э	5	3	5	5	5	5	5	3	7	5	5	6	9	5	6.3
score	TNP	5	5	3	5	5	З	3	5	5	3	I	5	6	5	5	5.0
y of	SΛN	ю	Г	5	5	7	5	5	3	5	5	6	5	7	7	5	5.9
luenc	ADL	7	5	5	7	7	7	5	7	6	7	7	6	7	7	5	6.5
Freg	UTM	5	5	7	5	5	5	5	7	5	5	7	5	5	7	5	6.1
tion/	asw	3	5	5	5	З	Э	5	5	5	5	5	5	7	9	5	6.0
Loca	anm	7	7	6	6	7	6	6	6	5	7	I	7	6	6	5	8.4
	NNC	0	5	0	0	3	-	5	5	0	5	3	7	7	7	3	5.5
ľ	ГDИ	7	7	7	7	7	7	7	7	7	7	I	7	6	7	9	7.1
	KUL	ı	5	I	7	I	I	I	I	I	I	I	5	7	7	ı	5.7
	пвв	7	5	7	5	5	7	6	5	7	7	7	5	6	6	5	6.5
ſ	AND	5	7	6	7	5	5	7	7	9	9	5	5	9	7	5	8.1
	CLK	7	7	6	7	7	7	7	6	6	3	3	7	6	5	5	7.1
	CHP	3	5	7	3	6	5	7	3	7	7	I	7	7	7	5	6.9
ſ	NHO	5	3	3	7	5	5	3	5	5	3	9	5	6	9	3	6.8
ſ	BNK	3	0	0	1	1	ю	0	3	7	0	5	0	6	3	3	2.8
	TQA	3	3	1	3	1	7	3	1	5	5	0	7	7	7	5	5.5
	IET No.	30078	29549	30827	30844	30762	30083	30830	29891	30240	30028	30877	30235	TN1 (S)	IR 50 (S)	Tetep (R)	IS
	P. No.	31	57	6	324	221	32	10	309	65	41	316	62	422	427	432	Ι
	Location/Frequency of scores (0-9)	IS IS IS IS IS IS IS IS IS IS	Image: Simple sector (0-) Simple sector (0-) Image: Simple sector (0-) Image: Simple sector (0-) Image: Simple sector	I.No. IET No. P.No. IET No. IET No. IET NO. IET	Location/Frequency of scores (0-9) P. No. IET No. IET No. IET No. 31 30078 3 5 7 8 7 31 30078 3 5 7 3 5 4.6 31 30078 3 5 7 3 5 4.6 31 30078 3 5 7 3 5 4.6 31 30078 3 5 7 3 5 4.6 31 30078 3 5 7 3 5 4.6 31 30078 3 5 7 3 5 4.6 57 29549 3 5 7 5 5 4.6 9 30827 1 0 9 5 5 4.7 9 30827 1 5 5 5 5 4.7 9 7 5 7	Lecation/Frequency of scores (0-9) P. No. IET No. IET No. IET No. 31 30078 3 5 3 7	P. No. IET No. Matrix Location/Frequency of scores (0-9) 31 30078 3 5 3 7 5 7 2 3 5 3 4 1 31 30078 3 5 3 7 5 7 2 5 7 8 1 1 8 1	P.No. IET No. ADT Location/Frequency of scores (0-9) 31 3078 3 5 3 7 5 7 3 5 3 7 5 7 3 5 3 3 5 3 4.7 31 30078 3 5 3 7 5 7 3 5 3 3 5 4.1 57 29549 3 0 3 5 7 3 5 7 3 5 4.1 9 30827 1 0 3 5 7 5 7 5 7 5 3 4.7 324 30827 1 0 3 7 7 0 9 5 3 4.7 324 30844 3 1 7 5 7 7 5 5 4 7 3 4.3 324 3 5	P.No. IET No. M <th< td=""><td>P.No. IET No. A C <thc< th=""> C <thc< th=""> <thc< th=""> C <thc< <="" td=""><td>P.No. IET No. Marchine decomendation of a construction of a constructine constructine constructine constructine construction of a const</td><td>P.No. IET No. Diamage (Pi and Pi and</td><td>P.No. IET No. Mar No.</td><td>P. No. IET No. ADT Variation/Frequency of scores (0.9) 31 30078 3 5 3 7 5 7 5 7 3 5 5 4/L 31 30078 3 5 3 7 5 7 5 5 7 3 5 3 3 5 5 4/L V<td>P. No. TET No. A Let No. A P</td><td>Pr.No. Terr No. Terr No. No.</td><td>P. No. IET No. Mar Var Mar Var Mar Var Var</td></td></thc<></thc<></thc<></thc<></td></th<>	P.No. IET No. A C <thc< th=""> C <thc< th=""> <thc< th=""> C <thc< <="" td=""><td>P.No. IET No. Marchine decomendation of a construction of a constructine constructine constructine constructine construction of a const</td><td>P.No. IET No. Diamage (Pi and Pi and</td><td>P.No. IET No. Mar No.</td><td>P. No. IET No. ADT Variation/Frequency of scores (0.9) 31 30078 3 5 3 7 5 7 5 7 3 5 5 4/L 31 30078 3 5 3 7 5 7 5 5 7 3 5 3 3 5 5 4/L V<td>P. No. TET No. A Let No. A P</td><td>Pr.No. Terr No. Terr No. No.</td><td>P. No. IET No. Mar Var Mar Var Mar Var Var</td></td></thc<></thc<></thc<></thc<>	P.No. IET No. Marchine decomendation of a construction of a constructine constructine constructine constructine construction of a const	P.No. IET No. Diamage (Pi and Pi and	P.No. IET No. Mar No.	P. No. IET No. ADT Variation/Frequency of scores (0.9) 31 30078 3 5 3 7 5 7 5 7 3 5 5 4/L 31 30078 3 5 3 7 5 7 5 5 7 3 5 3 3 5 5 4/L V <td>P. No. TET No. A Let No. A P</td> <td>Pr.No. Terr No. Terr No. No.</td> <td>P. No. IET No. Mar Var Mar Var Mar Var Var</td>	P. No. TET No. A Let No. A P	Pr.No. Terr No. Terr No. No.	P. No. IET No. Mar Var Mar Var Mar Var Var

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored $\leq 3^*$ and $\leq 5^{**}$)

Score/Location	ADT	CTK	GNV	IIRR	KUL	LDN	MNC	MND	MSD	MTU	SVN	PNT	PTB	PTN	RPR	TTB	VRN
0	2	0	0	0	0	0	48	0	0	0	0	0	9	62	0	0	0
1	49	6	0	0	0	0	37	0	0	0	0	0	0	179	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	133	41	1	18	34	0	81	2	49	1	28	4	11	198	137	<i>4</i>	178
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S	185	63	52	325	337	0	197	39	299	320	278	557	224	179	257	138	298
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	96	254	276	288	178	578	230	205	214	268	300	67	316	20	194	180	134
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	160	266	313	3	8	60	50	388	69	12	32	9	86	0	54	233	11
Total	625	633	642	634	557	638	643	634	631	601	638	634	643	638	642	630	621
ISI	5.6	7.3	7.8	5.9	5.6	7.2	5.2	8.1	6.0	6.0	6.1	5.2	6.4	2.8	5.5	6.8	4.9
Screening	A	A	A	V	A	V	A	V	A	A	Ψ	Ψ	A	Ν	A	Ψ	A

Table 4.2A: Location severity index and frequency distribution of sheath blight disease score for NSN-2 entries, Kharif-2023

(N- Natural; A- Artificial; LSI- Location Severity Index)

ladie 4.				S WIL		Susc	anda:		nuex	Lo Lo	catio	nd m; n/Fre	gn pro	y of s	ng u cores	(0-9)		17-1			ugnı, A <i>n</i> a	rtil-z	C 70
P. No.	IET No.	TQA	CTK	AND	швв	KUL	ГDИ	ONM	anm	GSW	UTM	SAN	TNP	PTB	NLd	КРК		12	IC IstoT	£=>	PI (<=3)*	S =>	**(S=>) Id
197	31682	1	6	7	5	5	7	0	5	3	7	5	3	3	1	5 3	5	4	4 17	7	41.2	13	76.5
176	31662	1	3	٢	5	ı	7	0	5	5	5	5	5	7	1	5 9	3	4	6 16	S	31.3	12	75.0
212	31696	-	5	٢	7	5	7	0	7	5	3	7	S	3	3	5 3	5	4	6 17	9	35.3	12	70.6
202	31687	7	5	6	I	5		0	1	ı	5	7	1	0			1	4	6 10	3	30.0	9	60.0
400	31906	1	7	6	5	3	7		7	3	5	5	5	5	33	5 5	3	4	6 17	9	35.3	13	76.5
196	31681	1	7	7	5	7	7	0	7	3	5	7	5	5	3	5 3	3	4	7 17	9	35.3	11	64.7
298	31836	3	7	7	5	3	7	3	5	5	7	5	5	5	3	5 3	3	4	8 17	9	35.3	13	76.5
550	31059	3	6	5	5	5	7	1	7	3	5	7	5	5	1	5 5	3	4	8 17	2	29.4	13	76.5
118	31553	-1	6	7	5	5	7	-	7	3	7	5	5	5		5 5	3	4	8 17	S	29.4	12	70.6
235	31717	5	3	6	5	ı	7	0	7	ю	5	7	5	5	5	5 3	3	4	8 16	S	31.3	12	75.0
34	31588	3	3	7	5	5	7	0	7	5	5	5	5	7	1	5 7	5	4.	8 17	4	23.5	12	70.6
633	TN1 (S)	6	5	6	6	5	7	6	6	7	٢	7	5	6	7	7 9	6	7.	6 17	0	0.0	3	17.6
638	IR 50 (S)	6	7	6	6	7	7	7	6	7	7	5	7	7	5	9 9	7	7.:	5 17	0	0.0	2	11.8
643	Tetep (R)	3	5	5	5	5	7	3	7	5	5	5	5	5	3	3 5	5	4.	8 17	4	23.5	15	88.2
Τ	IS	5.6	7.3	7.8	5.9	5.6	7.2	5.2	8.1	6.0	6.0	6.1	5.2 6	.4 2	.8	5.5 6.	8 4.5	- 6	ı	I	1	I	
(CI Sheren	tihility Inday. I		oper Tendo	~~ (DI)	Lacad		metono,	-floort	iner the	ant and la		* 0 / 10	83/ Parc	(*)			ļ						

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored $\leq 3^*$ and $\leq 5^{**}$)

Saoro	Locat	tion/Frequency of score	es (0-9)
Score	СТК	IIRR	PNT
0	0	0	0
1	2	0	1
2	0	0	0
3	6	0	17
4	0	0	0
5	8	24	58
6	0	0	0
7	30	58	9
8	0	0	0
9	38	4	0
Total	84	86	85
LSI	7.3	6.5	4.8
Screening method	А	A	А

Table 4.3A: Location severity index(LSI) and frequency distribution of sheath blight scores of NSN-H, *Kharif* 2023

(LSI-Location Severity Index; N-Natural; A-Artificial)

Table 4.3B: Pror	mising entries	with low	v susceptibility	index ((<=5.0) a	and high	PI ir	ı NSN-
H to sheath bligh	t, Kharif 2023	3						

				1	Locatio	n/Frequ	uency	of scoi	es (0-9)	
P. No.	Br. No.	IET No.	CTK	IIRR	PNT	SI	Total	<=3*	PI (<-3)**	*S=>	PI (<-5)**
51	2519	31415	3	5	5	4.3	3	1	33	3	100
16	2305	31383	1	7	5	4.3	3	1	33	2	67
56	2603	31420	1	7	5	4.3	3	1	33	2	67
25	2314	31391	3	7	5	5.0	3	1	33	2	67
35	2503	31401	7	5	3	5.0	3	1	33	2	67
36	2504	31402	3	7	5	5.0	3	1	33	2	67
47	2515	31411	5	7	3	5.0	3	1	33	2	67
58	2605	31421	7	5	3	5.0	3	1	33	2	67
3	2403	30513	5	5	5	5.0	3	0	0	3	100
20	2309	31387	5	5	5	5.0	3	0	0	3	100
64	2611	31426	-	5	5	5.0	2	0	0	2	100
82	Swarnadh	an (R)	5	5	5	5.0	3	0	0	3	100
86	Tetep	(R)	5	5	5	5.0	3	0	0	3	100
76	TN1(S)	7	9	5	7.0	3	0	0	1	33
	LSI		7.3	6.5	4.8						

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ;**Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> NHSN

The National Hybrid Screening Nursery (NHSN) was evaluated for their resistance to sheath blight at 20 varied locations. The entries were screened by artificial inoculation at most of the centres except Patna where the entries were evaluated under natural incidence. The frequency distribution of disease score and location severity index (LSI) are presented in the Table 4.4A. The disease pressure was very high (LSI >7) at Gangavathi (8.3), Mandya (7.6), Chinsurah (7.4), Titabar (7.3), NRRI (7.2) Ludhiana (7.0); High (LSI 6-7) at Pattambi (6.7), IIRR (6.5), Aduthurai (6.4), Maruteru (6.1), Navasari (6.1), New Delhi (6.0); moderate (LSI 3-6) at Kaul (5.8), Masodha (5.7), Varanasi (5.6), Pant Nagar (4.9), Moncompu (4.7) and Bankura (3.2), Patna (3.1) and Arundhatinagar (3.0). The selection of promising entries in NHSN was done based on the reaction at those locations where LSI was \geq 3.0. None of the entries were showed resistance against sheath blight based on the 0-9 disease screening scale (Table 4.4B). Some of the selected promising entries are namely, IET 31489, 31465, 31436, 31467, 30556, and 31496.

> DSN

The Donor Screening Nursery (DSN) was evaluated for resistance to sheath blight at 20 disease hot spot locations in India. The entries were screened by artificial inoculation at all the centers except Patna, where the entries were evaluated under natural conditions. The frequency distribution of disease scores and location severity index (LSI) were presented in Table 4.5A. The disease pressure was very high (LSI >7) at Gangavathi (8.1), Mandya (7.9), Ludhiana (7.2), Aduthurai (7.1), Cuttack (7.0), and; high (LSI 6-7) at New Delhi (6.7), Titabar (6.5), Maruteru (6.3), IIRR (6.2), Kaul (6.1), and Pattambi (6.4); moderate (LSI 3-6) at Navasari (6.0), Chiplima (5.8), Varanasi (5.6), Masodha (5.5), Raipur (5.5), Pant Nagar (5.4), Moncompu (4.5), Patna (3.2); and low (LSI >3) at Arundhatinagar (2.1). The selection of promising entries in DSN was done based on the reaction at those locations where LSI was \geq 3.0. None of the entries showed resistant (\leq 3) against sheath blight. However, some of the entries were found better than Tetep and promising (\leq 5) namely, VP-R36-SHB, VP-R158-SHB, 19345, VP-R109-SHB, VP-R262-SHB, NLRBL-7, NLR 3186, VP-R104-SHB, VP-R298-SHB, VP-R297-SHB, CB 20164, CR1014, NLRBL-5, NLRBL-8, CK 145-3, CK 35-3, NLRBL-4, CB 20117, and RTCNP-97 (Table 4.5B).

Score/ Location Incretion/Frequency of scores (0-9) Score/ Location A A B VK K M		NHA				0		3		6		33	S	9	T
Scoret Scoret A A B C <thc< th=""> C C</thc<>						0		5.		0		, T	11	S.	l
Scores Increation/Frequency of scores (0-9) Scores Increation/Frequency of scores (0-9) No N		LLB	0	0	0	2	0	23	0	51	0	44	120	7.3	ļ
Location/Frequency of scores (0-9) Location A M R R K Location/Frequency of scores (0-9) Score/ A A R R K C C C K K L L R R K M R R R M R R M R R R M R R R		NTQ	18	25	0	36	0	23	0	18	0	0	120	3.1	
Scorect Location/Frequency of scores (0-9) Scorect A M K H K Location/Frequency of scores (0-9) Pocation M		PTB	0	0	0	0	0	39	0	62	0	19	120	6.7	
Scoret Location/Frequency of scores (0-9) Location A R Location/Frequency of scores (0-9) R K <td>6</td> <td>TNP</td> <td>0</td> <td>0</td> <td>0</td> <td>25</td> <td>0</td> <td>79</td> <td>0</td> <td>15</td> <td>0</td> <td>1</td> <td>120</td> <td>4.9</td> <td></td>	6	TNP	0	0	0	25	0	79	0	15	0	1	120	4.9	
Scoret Location/Frequency of scores (0-9) Scoret DT RD RT K DT RD RT N		SAN	0	0	0	2	0	53	0	63	0	-	119	6.1	
Location/Frequency of scores (0-3) Location Location/Frequency of scores (0-3) A R H K K N N N 0		NDF	0	0	0	2	0	57	0	09	0	1	120	6.0	•
Score/ Location Location/Frequency of scores (0.9 Score/ I A RN K L MN		MTU	0	0	0	0	0	63	0	41	0	10	114	6.1	-
Soure/ Location Interstore Location/Frequency of scon- A A B B W H W W M M M M M M M M M M M M M M M M	es (0-9	dsw	0	0	0	5	0	74	0	31	0	6	119	5.7	
Score/ Location Increation/Frequence. Score/ I A R A K N Increation/Frequence. 0 0 0 0 0 0 0 0 0 7 1 0 13 13 0 2 0 0 0 0 7 2 0 13 13 0 2 0 0 0 7 7 3 15 47 40 1 5 0 1 5 0 1 5 0 27 3 15 47 40 1 5 0 1 5 0 27 4 0 0 0 0 0 0 0 27 36 7 15 0 1 5 0 1 57 10 36 6 0 0 0 0 0 0	vofsco	anm	0	0	0	0	0	23	0	38	0	59	120	7.6	
Location Location/Fr Score/ A A A A C C C C C Location/Fr 0 0 0 0 2 0 0 0 0 0 1 0 13 13 0 2 0 0 0 0 0 2 0 0 2 0	auency		7	11	0	27	0	36	0	32	0	7	120	4.7	•
Interpretation A R C C C C K W Location AA BNK C C M V Locat 1 0 0 0 0 0 0 0 1 0 13 13 0 2 0 0 0 0 2 0 0 2 0 0 0 0 0 3 15 47 40 1 5 0 1 5 4 0 0 2 0 0 0 0 0 3 15 47 40 1 5 0 1 5 4 0 0 0 0 0 0 0 0 5 46 13 20 28 17 4 35 52 6 0 0 0 0 0 0 0 0 7 7 40 <t< td=""><td>ion/Fre</td><td>ГDИ</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>10</td><td>0</td><td>103</td><td>0</td><td>7</td><td>120</td><td>7.0</td><td>•</td></t<>	ion/Fre	ГDИ	0	0	0	0	0	10	0	103	0	7	120	7.0	•
Score/ Location A R A 1 0 0 2 0 0 0 0 1 0 13 13 0 2 0 0 0 0 2 0 0 2 0 0 0 0 0 3 15 47 40 1 5 0 1 1 3 15 47 40 1 5 0 1	Locat	KUL	0	0	0	5	0	52	0	45	0	0	102	5.8	
Score/ Location ADT A 1 0 0 0 0 0 1 0 13 13 0 2 0 2 0 0 2 0 0 0 3 15 47 40 1 5 0 0 4 0 0 2 0 0 0 0 3 15 47 40 1 5 0 0 4 0 0 2 0 0 0 0 7 15 0 7 40 1 5 0 7 15 0 7 40 47 35 9 43 0 0 0 0 0 9 43 0 1 51 47 81 9 10 1 51 40 0 0 0		ивв	0	0	0	1	0	35	0	<i>6L</i>	0	S	120	6.5	
Score/ Location ADT D ADT ADT A 1 0 0 0 2 0 0 0 2 0 0 2 0		ΛΝЭ	0	0	0	0	0	4	0	35	0	81	120	8.3	
Score/ Location ADT D 0 0 0 2 0 1 0 13 13 0 3 15 47 40 1 4 0 0 28 0 5 46 13 20 28 0 7 15 0 7 40 1 7 15 0 7 40 1 9 43 0 7 40 0 0 9 43 0 1 51 51 51 1019 73 120 120 120 120 LSI 6.4 3.0 3.2 7.4		CTK	0	2	0	5	0	17	0	47	0	47	118	7.2	
Score/ Location ADT MDT 0 0 0 2 1 0 13 13 2 0 0 28 3 15 47 40 4 0 0 28 5 46 13 20 6 0 0 7 9 43 0 7 9 43 0 11 9 43 0 120 LSI 6.4 3.0 3.2		NHO	0	0	0	1	0	28	0	40	0	51	120	7.4	
Score/ Location ADT ADT 0 0 0 0 1 0 13 13 2 0 0 13 3 15 47 4 0 0 0 5 46 13 7 15 0 0 9 43 0 0 0 9 43 0 73 119 73 LSI 6.4 3.0 119 73 119	•	BNK	2	13	28	40	6	20	0	7	0	1	120	3.2	-
Score/ Location ADT 0 0 0 1 0 0 2 0 0 3 15 46 5 46 0 6 0 15 7 15 15 9 43 0 9 43 119 LSI 6.4 119		ARD	0	13	0	47	0	13	0	0	0	0	73	3.0	
Score/ Location 0 0 1 1 2 2 3 3 3 3 5 5 5 5 7 7 7 7 7 Sote/ Location Locati		TQA	0	0	0	15	0	46	0	15	0	43	119	6.4	-
		Score/ Location	0	1	2	3	4	v	6	7	8	6	Total	ISI	

Table 4.4A: Location severity index and frequency distribution of sheath blight disease score for NHSN entries, Kharif-2023

(N- Natural; A- Artificial; LSI- Location Severity Index)

Table	4.4B: Promising	g ent	tries	with	low	SUSC	ceptil	pility	inde	X (S.	I≤5.2	?) and	d hig	h pr	omis	ing i	ndex	in N	ISH	V to s	heat	th bli	ght,	Kha	urif-2()23	
											L0	catio	n/Fr	aup a	lcy o	fscor	es (0.	(6-									
P.No.	. IET No.	TQA	ARD	BNK	CHN	CTK	AND	ивв	KUL	ГDИ	JNW	anm	ds M	NTU	NDL	SAN	LNd	PTB	NLd	LLB	ΝΗΛ	IS	IstoT	£=>	*(£=>) Iq	S =>	**(č= >) I¶
34	Wazuhophek	5	3	3	Г	7	Г	3	5	7	3	7	5	5	5	7	3	7	1	5	3	4.9	20	7	35.0	13	65.0
52	Tetep	5	1	-	5	7	7	5	5	7	0	7	5	7	7	7	3	5	3	5	5	5.1	19	4	21.1	12	63.2
90	31489	5	З	7	Г	3	7	5	7	7	0	7	3	7	7	5	7	5	3	3	5	5.2	20	9	30.0	11	55.0
72	US-312 (NCH)	5	-	5	5	-	6	7	5	7	7	5	5	5	7	1	5	7		6	5	5.2	19	4	21.1	12	63.2
62	31465	5		2	5	3	6	7	5	7	3	5	5	5	7	7	5	5	3	7	5	5.3	19	4	21.1	13	68.4
9	31436	5	I	1	6	5	6	5	7	5	3	5	5	7	5	7	5	7	0	7	3	5.3	19	4	21.1	12	63.2
56	DRR Dhan 53	5	3	1	٢	5	6	7	I	7	7	5	5	5	5	5	5	7	1	7	5	5.3	19	3	15.8	12	63.2
64	31467	5	3	3	5	6	6	7	5	7	1	5	5	5	5	7	5	7	0	7	7	5.4	20	4	20.0	12	60.0
25	30556	3	ı	5	7	7	Г	5	5	5	7	5	5	5	7	5	5	7	0	7	5	5.4	19	2	10.5	12	63.2
83	Jaya (RCV)	3	3	3	5	6	6	5	5	7	1	7	3	9	7	7	5	7	1	7	5	5.4	20	6	30.0	11	55.0
33	DRR Dhan 62	5	3	3	5	7	6	5	5	7	1	9	9	5	7	5	5	7	3	5	3	5.4	20	5	25.0	13	65.0
66	31496	6	3	1	5	6	6	5	5	7	5	7	5	ı	7	3	3	5	3	7	5	5.4	19	S	26.3	12	63.2
110	TN1	6	I	5	6	7	6	6	5	7	6	7	7	7	5	7	5	6	7	9	, 6	7.4	19	0	0.0	4	21.1
115	IR 50	6	3	3	6	7	6	6	7	7	5	9	6	7	7	7	3	7	5	6	7	6.9	20	3	15.0	S	25.0
	LSI	6.4	3.0	3.2	7.4	7.2	8.3	6.5	5.8	7.0	4.7	7.6	5.7	6.1	6.0	6.1	4.9	6.7	3.1	7.3 5	5.6		1	ı	ı	ı	ı
010/	Q I I '.I. I.'		T T		1 1			5		1	-		10%	-	ノナナレ												

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored $\leq 3^*$ and $\leq 5^{**}$)
ICAR-IIRR - AICRPR - Annual Progress Report 2023, Vol.2, Plant Pathology

								Locat	ion/Fre	duency	v of sc	ores (0	(6-1							
Score/Location	TQA	ARD	СНЬ	CTK	AND	ивв	KUL	ГDИ	MNC	anw	asm	UTN	ИЛГ	SAN	PNT	PTB	PTN	КРК	LTB	ЛВИ
0	0	0	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0	0	0	0
1	4	43	6	3	0	0	0	0	25	0	0	0	0	0	0	0	64	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	30	40	28	13	0	7	3	0	37	1	31	0	0	5	4	4	LL	42	32	39
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S	37	3	64	48	12	75	88	1	69	34	103	111	47	92	159	95	52	89	43	75
9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	17	0	81	55	69	120	101	175	54	42	59	57	144	112	41	71	15	67	62	59
8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	118	0	22	88	125	9	3	17	11	128	13	37	13	1	3	40	0	14	59	19
Total	206	86	204	207	206	208	195	193	212	205	206	205	204	210	207	210	208	212	196	192
ISI	7.1	2.1	5.8	7.0	8.1	6.2	6.1	7.2	4.5	7.9	5.5	6.3	6.7	6.0	5.4	6.4	3.2	5.5	6.5	5.6
Screening	V	V	A	V	A	A	A	A	A	A	A	A	A	A	A	A	Z	A	A	A
AI Motorial A Autif	-:-1. T CT	T contin		(und and				1	1	1	1	1	Ì	İ	1	ł			İ	Ī

Table 4.5A: Location severity index and frequency distribution of sheath blight disease score for DSN entries, Kharif-2023

(N- Natural; A- Artificial; LSI- Location Severity Index)

ICAR-IIRR - AICRPR - Annual Progress Report 2023, Vol.2, Plant Pathology

r				1	1													_								
		(S=>) Id	100.0	73.7	80.0	78.9	78.9	78.9	60.0	75.0	84.2	80.0	78.9	73.7	68.4	77.8	65.0	75.0	61.1	57.9	68.4	73.7	77.8	15.0	15.8	
023		S =>	20	14	16	15	15	15	12	15	16	16	15	14	13	14	13	15	11	11	13	14	7	3	3	
harif-2		(£=>) Id	25.0	36.8	30.0	26.3	26.3	31.6	35.0	30.0	21.1	25.0	21.1	31.6	31.6	27.8	30.0	25.0	22.2	31.6	26.3	15.8	22.2	5.0	5.3	
t, <i>K</i>		£=>	5	7	9	5	5	9	7	9	4	5	4	9	9	5	9	5	4	9	5	3	2	-	1	
high		IrtoT	20	19	20	19	19	19	20	20	19	20	19	19	19	18	20	20	18	19	19	19	9	20	19	
ath l		IS	4.3	4.5	4.6	4.7	4.7	4.7	4.8	4.8	4.8	4.8	4.8	4.9	5.0	5.0	5.1	5.1	5.1	5.2	5.2	5.2	5.2	7.7	7.5	
she		ΝΗΛ	5	3	5	3	5	3	5	3	5	5	3	5	5		3	5	3	3	3	5	ı	Ζ	6	5.6
N to		LTB	5	5	5	5	3	3	5	5	7	3	5	3	5	3	5	3	5	3	3	3	5	6	9	6.5
n DS		ВРВ	3	5	5	3	5	5	7	5	З	5	5	5	3	З	5	5	5	5	5	5	5	6	7	5.5
lex i	6-0)	NTY	1	1	1	1	1	3	3	1	3	5	5	1	1	5	5	3	1	1	3	1	ı	L	5	3.2
ind	cores	PTB	5	S	S	5	5	S	3	S	Ś	Ś	Ś	Ś	5	Ś	5	5	7	5	5	5	5	6	6	6.4
ising	ofse	TNA	5	5	5	5	5	S	3	S	S	S	S	S	3	S	5	5	5	5	5	5	ı	6	6	5.4
nom	ency	SΛN	5	2	S	5	5	ς	5	Ś	Ś	Ś	Ś	Ś	7	Ś	7	5	7	7	2	5	5	∽	7	6.0
igh r	requ	NDF	5	L-	L-	7	7	7	7	7	S	7	7	ı	7	6	7	7	I	7	٢	5	7	7	7	6.7
id hi	on/F	UTM	5	2	S	5	5	S	5	S	5	S	5	S	5	S	5	7	7	5	7	7	5	S	6	6.3
2) aı	ocati	dsw	5	5	7	5	5	3	5	5	3	3	3	3	5	3	3	5	5	3	5	5	1	6	9	5.5
I≤5.	L	anm	5	7	5	5	5	5	7	7	5	5	5	6	5	7	9	5	7	9	5	5	ı	6	6	7.9
ex (S		JNW	5	1	1	1	1	0	0	0	1	1	0	Э	1	1	3	3	5	1	5	5	3	6	7	4.5
ind		ГDИ	5	,	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	ı	7	7	7.2
bility		KUL	5	ς	ς	5	5	5	7	5	5	5	5	7	7	5	7	5	5	7	5		ı	6	-	6.1
eptil		ивв	3	5	З	5	3	5	7	5	5	З	5	5	3	5	5	5	7	7	7	5	ı	6	6	6.2
) SNS		ΛNĐ	5	7	7	7	7	5	6	6	5	5	7	6	6	6	7	6	7	6	6	7	ı	6	7	8.1
low		CLK	1	ξ	5	7	7	6	7	6	5	7	5	6	6	5	7	7	5	5	ı	9	6	6	5	7.0
with		CHb	5	5	5	5	5	7	1	З	5	5	5	1	3	5	3	5	1	7	3	5	1	S	9	5.8
ries		ARD	3		З		1	ı	1	1	ı	1	ı	1	1	ı	3	3	I	ı	5	1	3	1	1	2.1
s ent		TQA	5	З	З	3	3	5	1	З	5	6	ю	5	5	ю	1	3	3	3	З	6	ı	6	6	7.1
4.5B: Promising		Designation No.	WP-SHB	VP-R36-SHB	VP-R158-SHB	19345	VP-R109-SHB	VP-R262-SHB	NLRBL-7	NLR 3186	VP-R104-SHB	VP-R298-SHB	VP-R297-SHB	CB 20164	CR1014	NLRBL-5	NLRBL-8	CK 145-3	CK 35-3	NLRBL-4	CB 20117	Tetep	RTCNP-97	INI	IR-50	ISI
Table		P.No.	82	59	70	49	99	75	160	166	64	80	6L	144	124	158	161	148	149	157	143	198	132	188	193	

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored $\leq 3^*$ and $\leq 5^{**}$)

TRIAL No.5: SCREENING FOR SHEATH ROT RESISTANCE

> NSN-1

The National Screening Nursery 1 consisting of 432 entries were evaluated against sheath rot disease at 12 locations across the country. Screening was done artificially in some centers viz., Bankura, Chinsurah, Navasari, Pusa, Rajendranagar, Raipur and Titabar. In Coimbatore and Rajendranagar, inoculation done by thick inoculum spray before panicle intiation. In Chinsurah, Navasari and Raipur, inoculation done by grain culture plugging at booting stage. It was done under natural conditions at Aduthurai, Cuttack, Karjat, Lonavala and Nawagam.

High disease pressure was recorded at Chinsurah (6.9) Raipur (6.6) and Aduthurai (6.3); moderate disease pressure at Navasari (5.8), Karjat (5.3), Nawagam (5.2), Cuttack (5.1), Lonavala (3.7). The disease pressure was very low (LSI \leq 3) at Bankura, Rajendranagar, Pusa, and Titabar, hence the data from these centres were not considered for selecting the resistant entries for sheath rot disease. The frequency distribution of sheath rot scores are presented in the (Table 5.1A) along with location severity indices.

				Loca	tion/F	requei	ncy of s	scores	(0-9)			
Score	ADT	BNK	CHN	CTK	ТIJ	LNV	SAN	NWG	PSA	RNR	RPR	TTB
0	39	97	0	121	0	0	0	0	12	223	0	0
1	24	195	11	0	0	0	0	0	183	17	0	208
2	0	2	0	0	0	0	0	0	0	0	0	0
3	56	101	16	0	39	273	21	50	149	120	0	30
4	0	0	0	0	0	0	0	0	0	0	0	0
5	46	21	98	94	265	149	236	277	65	63	163	2
6	0	0	0	0	0	0	0	0	0	0	0	0
7	39	12	176	104	85	2	156	103	7	5	191	1
8	0	0	0	0	0	0	0	0	0	0	0	0
9	220	3	131	112	10	0	16	0	0	0	77	0
Total	424	431	432	431	399	424	429	430	416	428	431	241
LSI	6.3	1.7	6.9	5.1	5.3	3.7	5.8	5.2	2.4	1.7	6.6	1.3
Screening method	Ν	Α	Α	Ν	Ν	Ν	Α	Ν	Α	Α	Α	Α

Table 5.1A: Location severity index (LSI) and frequency distribution of sheath rot scores of NSN-1, *Kharif*-2023

(LSI-Location Severity Index; N-Natural; A-Artificial)

The selection of promising entries was done based on the disease data of those locations where the disease pressure was moderate to high. A few promising entries with high promising index are presented in the Table 5.1B. It includes IET#29549, 30605, 30078, 30935, 30831, 30233, 31103, 30835, 30757, 29820, 28184, 30662, 30830 and 30877.

				Locat	tion/Fi	equer	ncy of	fscore	es (0-9)				**		* -
P. No.	Entry No.	IET No.	ADT	CHN	CTK	KJT	LNV	SVN	NWG	RPR	SI	Total	<=3*	PI (<-3)*	* S =>	PI (<-5)*
57	5602	29549	0	1	0	3	3	7	5	7	3.3	8	5	63	6	75
237	4019	30605	0	3	0	5	3	5	5	5	3.3	8	4	50	8	10 0
31	4701	30078	1	1	0	7	5	5	5	5	3.6	8	3	38	7	88
296	4522	30935	0	5	0	3	3	5	5	9	3.8	8	4	50	7	88
322	4216	30831	0	5	0	3	5	7	5	5	3.8	8	3	38	7	88
56	5601	30233	3	3	0	3	3	7	5	7	3.9	8	5	63	6	75
100	5704	31103	0	3	0	5	3	7	5	9	4.0	8	4	50	6	75
315	4209	30835	0	7	0	5	3	7	5	5	4.0	8	3	38	6	75
53	4415	29405 (R)	3	3	0	5	3	5	7	7	4.1	8	4	50	6	75
197	3915	30757	9	1	0	5	3	5	5	5	4.1	8	3	38	7	88
204	3606	29820	0	5	5	5	3	7	3	5	4.1	8	3	38	7	88
268	4820	28184	3	5	0	7	3	5	5	5	4.1	8	3	38	7	88
136	3410	30662	0	5	5	5	5	5	3	5	4.1	8	2	25	8	10 0
10	5111	30830	1	5	0	5	5	5	5	7	4.1	8	2	25	7	88
316	4210	30877	0	5	0	5	-	9	5	5	4.1	7	2	29	6	86
419	HR 12 (S)		9	7	5	9	3	7	7	7	6.8	8	1	13	2	25
	LSI		6. 3	6.9	5.1	5.3	3.7	5.8	5.2	6.6						

Table 5.1B: Promising entries with low susceptibility index (≤ 4.0) and high PI in NSN-1 to Sheath rot, *Kharif*-2023

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored $\leq 3^*$ and $\leq 5^{**}$)

> NSN-2

The NSN -2 nursery consisting of 643 entries was evaluated only at five locations and screening was done under natural conditions at Aduthurai and Nawagam. Artificial screening was done at Navasari, Pusa and Raipur. High disease pressure was recorded at Raipur (6.6), Aduthurai (6.3), Navasari (5.8) and Nawagam (5.3) and very low disease pressure at Pusa (2.0), hence the data from these center was not considered for selecting the resistant entries for sheath rot (Table 5.2A).

The selection of promising entries was done based on the disease data of those locations where the disease pressure was moderate to high. A few promising entries with high promising index are presented in the Table 5.2B. These entries are IET#31586, 31820, 31672, 31800, 31675, 31677, 31685, 31706, 31719, 31895, 31865, 31628, 31683, 31689, 30713, 31812, 31994, 31616, 31906, 31725, 31587, 31553, 31658, 31710 and 31827.

Saara		Location/F	Frequency of s	cores (0-9)	
Score	ADT	NVS	NWG	PSA	RPR
0	39	0	0	38	0
1	26	0	0	360	0
2	0	0	0	0	0
3	119	37	86	162	1
4	0	0	0	0	0
5	90	337	367	69	242
6	0	0	0	0	0
7	32	241	177	11	270
8	0	0	0	0	0
9	319	23	3	0	129
Total	625	638	633	640	642
LSI	6.3	5.8	5.3	2.0	6.6
Screening method	N	Α	N	A	A

Table 5.2A: Location severity index (LSI) and frequency distribution of sheath rot scores of NSN-2, *Kharif*-2023

(LSI-Location Severity Index; N-Natural; A-Artificial)

Table 5.2B: Promising entries with low susceptibility index (≤ 4.0) and high PI in NSN-2 to Sheath rot, *Kharif*-2023

			Location	n/Frequen	cy of sco	res (0-9)				*		*
P. No.	Breeding No.	IET No.	ADT	NVS	NWG	RPR	SI	Total	<≡3*	PI (<-3)*	*S=>	PI (<-5)*
32	3832	31586	0	5	3	5	3.3	4	2	50	4	100
281	4929	31820	0	5	3	5	3.3	4	2	50	4	100
187	4161	31672	3	3	3	5	3.5	4	3	75	4	100
260	4908	31800	3	3	3	5	3.5	4	3	75	4	100
190	4301	31675	0	7	3	5	3.8	4	2	50	3	75
192	4303	31677	0	3	5	7	3.8	4	2	50	3	75
200	4311	31685	0	3	5	7	3.8	4	2	50	3	75
222	4333	31706	0	5	3	7	3.8	4	2	50	3	75
237	4348	31719	0	7	3	5	3.8	4	2	50	3	75
385	5507	31895	0	7	3	5	3.8	4	2	50	3	75
557	5410	31865	0	5	3	7	3.8	4	2	50	3	75
140	4114	31628	0	5	5	5	3.8	4	1	25	4	100
198	4309	31683	0	5	5	5	3.8	4	1	25	4	100
204	4315	31689	0	5	5	5	3.8	4	1	25	4	100
13	3813	30713	3	5	3	5	4.0	4	2	50	4	100
272	4920	31812	5	3	3	5	4.0	4	2	50	4	100
473	6108	31994	3	5	3	5	4.0	4	2	50	4	100
127	4101	31616	1	5	3	7	4.0	4	2	50	3	75
400	5522	31906	1	7	3	5	4.0	4	2	50	3	75
244	4355	31725	0	-	5	7	4.0	3	1	33	2	67
33	3833	31587	1	5	5	5	4.0	4	1	25	4	100
118	3555	31553	1	5	5	5	4.0	4	1	25	4	100
172	4146	31658	1	5	5	5	4.0	4	1	25	4	100
226	4337	31710	1	5	5	5	4.0	4	1	25	4	100
289	4937	31827	1	5	5	5	4.0	4	1	25	4	100
633	TN1 (S)		9	7	5	9	7.5	4	0	0	1	25
630	HR 12(S)		9	7	7	7	7.5	4	0	0	0	0
	LSI		6.3	5.8	5.3	6.6						

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored $\leq 3^*$ and $\leq 5^{**}$)

> NSN -H

Screening for sheath rot under NSN- hills was conducted at only at Karjat and Lonavala under natural infection condition. The location severity index at Karjat was 4.6 and at in Lonavala 3.9. The frequency distribution of scores at Karjat centre indicated that, 17 entries showed 1 score, 20 entries showed score of 7 and 9 entries scored 9 and in Lonavala and remaining all entries showed very less score of below 5 (Table 5.3A).

The promising entries were selected based on the disease data of those locations where the disease pressure was moderate. The promising entries that had an SI less than 3.0 are IET # 28906, 31402, 31414, 31420, 31421, 31422, 29654, 31383, 31391, 31394, 31397, 31400, 31404, 31405, 31409, 31426, 31416, 31417, 31427, 31429 and 31431 (Table 5.3B).

Table 5.3A: Location severity index (LSI) and frequency distribution of sheath rot scores of NSN-H, *Kharif*-2023

Scoro	Location/Frequen	ncy of scores (0-9)
Store	KJT	LNV
0	0	0
1	17	0
3	20	47
5	17	37
7	20	1
9	9	0
Total	83	85
LSI	4.6	3.9
Screening method	N	N

(LSI-Location Severity Index; N-Natural; A-Artificial)

Table 5.3B: Promising	entries with	low susceptibility	index (≤ 4.0)	and high	PI in N	SN-
H to Sheath rot, Kharij	f-2023					

р	Entry	IET	Location/ of scor	Frequency ces (0-9)		al	*	3)**	*	5)**
No.	No.	No.	KJT	LNV	SI	Tot	~ ~) Id	¥ >	->) Id
2	2402	28906	1	3	2.0	2	2	100	2	100
36	2504	31402	1	3	2.0	2	2	100	2	100
50	2518	31414	1	3	2.0	2	2	100	2	100
56	2603	31420	1	3	2.0	2	2	100	2	100
58	2605	31421	1	3	2.0	2	2	100	2	100
59	2606	31422	1	3	2.0	2	2	100	2	100
1	2401	29654	-	3	3.0	1	1	100	1	100
16	2305	31383	3	3	3.0	2	2	100	2	100
25	2314	31391	3	3	3.0	2	2	100	2	100
28	2317	31394	3	3	3.0	2	2	100	2	100
31	2320	31397	3	3	3.0	2	2	100	2	100
34	2502	31400	3	3	3.0	2	2	100	2	100
39	2507	31404	3	3	3.0	2	2	100	2	100
40	2508	31405	3	3	3.0	2	2	100	2	100

D	Entry	IFT	Location/ of scor	Frequency ces (0-9)		al	*	3)**	*	5)**
No.	No.	No.	KJT	LNV	SI	Tota	<=3	PI (<->	€ = ≻	PI (<-
45	2513	31409	3	3	3.0	2	2	100	2	100
64	2611	31426	3	3	3.0	2	2	100	2	100
52	2520	31416	1	5	3.0	2	1	50	2	100
53	2522	31417	1	5	3.0	2	1	50	2	100
65	2612	31427	1	5	3.0	2	1	50	2	100
67	2701	31429	1	5	3.0	2	1	50	2	100
71	2705	31431	1	5	3.0	2	1	50	2	100
73	HR-12		1	3	2.0	2	2	100	2	100
86	Tetep		1	5	3.0	2	1	50	2	100
	LSI		4.6	3.9						

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored $\leq 3^*$ and $\leq 5^{**}$)

> NHSN

The NHSN trial consisted of 120 entries including checks. The entries were evaluated at 12 locations representing different geographical regions. The frequency distribution of disease scores and the LSI are presented in Table 5.4A. The disease pressure was very high at Aduthurai (7.6) and Cuttack (7.3); high at Chinsurah (6.6), Navasari (5.9), Nawagam (5.6), Pusa (4.0) and Lonavala (3.9). The disease pressure was very low (LSI \leq 3) at Bankura, Karjat, Rajendranagar and Titabar, data from these centres were not considered for selecting the resistant entries.

The promising entries were selected based on the disease data of those locations where the disease pressure was moderate and high. The promising entries that had an SI less than 5.0 are IET Nos. 31495, 31469, 31470, 30558, 31466, 31436, 31460, 31471, 31478 and 31472 (Table 5.4B).

Score			L	ocation/	Freque	ncy of s	scores (0-9)			
Stort	ADT	BNK	CHN	CTK	KJT	LNV	NVS	NWG	PSA	RNR	TTB
0	0	46	0	9	0	0	0	0	4	63	0
1	1	47	0	0	69	0	0	0	16	33	67
2	0	14	0	0	0	0	0	0	0	0	0
3	14	12	3	0	18	65	3	8	41	18	36
4	0	0	0	0	0	0	0	0	0	0	0
5	13	1	27	8	23	55	59	66	34	2	9
6	0	0	0	0	0	0	0	0	0	0	0
7	11	0	79	44	10	0	56	46	25	4	2
8	0	0	0	0	0	0	0	0	0	0	0
9	80	0	11	54	0	0	1	0	0	0	0
Total	119	120	120	115	120	120	119	120	120	120	114
LSI	7.6	1.0	6.6	7.3	2.6	3.9	5.9	5.6	4.0	1.0	2.1
Screening method	Ν	Α	Α	Ν	Ν	Ν	Α	Ν	Α	Α	Α

Table 5.4A: Location severity index (LSI) and frequency distribution of sheath rot scores of NHSN, *Kharif*-2023

(LSI-Location Severity Index; N-Natural; A-Artificial)

			L	ocatio	on/Fre	quen	cy of	score	es				*		**
	Entw	IFT				(0-9)					tal	3*	3) [*]	*	(ک *
P.No.	No.	No.	ADT	CHN	CTK	LNV	SVN	9 MN	PSA	SI	Tot	V	->) Id	=>	->) Id
97	3103	31495	5	7	0	3	7	5	1	4.0	7	3	43	5	71
66	2930	31469	5	3	7	3	7	5	3	4.7	7	3	43	5	71
67	2931	31470	3	7	7	3	5	5	3	4.7	7	3	43	5	71
37	2910	30558	9	7	0	5	5	3	5	4.9	7	2	29	5	71
63	2927	31466	9	7	0	5	5	7	1	4.9	7	2	29	4	57
6	2806	31436	3	5	9	3	5	5	5	5.0	7	2	29	6	86
47	2920	31460	3	7	7	5	5	5	3	5.0	7	2	29	5	71
68	3001	31471	3	7	5	3	7	5	5	5.0	7	2	29	5	71
77	3010	31478	5	7	7	3	5	3	5	5.0	7	2	29	5	71
69	3002	31472	5	7	5	3	5	5	5	5.0	7	1	14	6	86
110	TN1(S)		9	7	9	3	7	7	7	7.0	7	1	14	1	14
	LSI		7.6	6.6	7.3	3.9	5.9	5.6	4.0						

Table 5.4B: Promising entries with low susceptibility index (≤ 4.0) and high PI in NHSN to Sheath rot, *Kharif*-2023

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored $\leq 3^*$ and $\leq 5^{**}$)

> DSN

The DSN trial consisted of 212 entries including checks were screened at eight locations across the country. The frequency distribution of disease scores and the LSI are presented in the Table 5.5A. The nursery was screened under natural conditions at Aduthurai, Karjat, Lonavala, Nawagam and artificially done in remaining locations viz., Navasari, Pusa, Rajendranagar and Raipur. Very high disease pressure was at Aduthurai (7.2); high disease pressure was recorded at Raipur (6.9), Karjat (5.8), Navasari (5.7), Nawagam (5.2). Moderate disease pressure was recorded at Lonavala (3.4) and very low disease pressure was observed Pusa (2.4) and Rajendranagar (0.8) during the season, so the data from these two locations were not considered for the selection of resistant lines.

The selection of promising entries were done based on the data of those locations where the disease pressure was moderate to high. The promising entries with SI \leq 4 are presented in the Table 5.5B. Some of the promising lines were NLRBL-7, NKRBL-8, CB 20117 and NLR 3276.

Table 5.5A: Location severity index (LSI) and frequency distribution of sheath rot scores of DSN, *Kharif*-2023

Score	Location/Frequency of scores (0-9)											
Score	ADT	KJT	LNV	NVS	NWG	PSA	RNR	RPR				
0	5	1	0	0	0	11	126	0				
1	7	0	0	0	0	101	55	0				
2	0	0	1	0	0	0	0	0				
3	21	14	166	12	33	49	14	0				
4	0	0	0	0	0	0	0	0				

Score			Locatio	n/Freque	ncy of sco	res (0-9)		
Score	ADT	KJT	LNV	NVS	NWG	PSA	RNR	RPR
5	29	103	42	119	126	35	8	66
6	0	0	0	0	0	0	0	0
7	17	70	0	75	49	10	5	92
8	0	0	0	0	0	0	0	0
9	127	11	0	4	0	0	0	54
Total	206	199	209	210	208	206	208	212
LSI	7.2	5.8	3.4	5.7	5.2	2.4	0.8	6.9
Screening method	Ν	Ν	Ν	A	Ν	A	A	A

(LSI-Location Severity Index; N-Natural; A-Artificial)

Table 5.5B: Promising	entries with l	low susceptibility	index (≤ 4.0)	and high	PI in DSN to
Sheath rot, Kharif-2023	j				

		Loc	ation/	Frequ	ency	ofsc	ores						
				(0-	-9)				I	-*	**(*	**(9
P.No.	Designations	ADT	КJТ	LNV	SVN	NWG	RPR	SI	Tot	<=3	PI (<-3	<u>S</u> =>	}] Id
160	NLRBL-7	0	3	3	5	3	5	3.2	6	4	67	6	100
161	NLRBL-8	0	3	3	3	3	9	3.5	6	5	83	5	83
143	CB 20117	3	5	3	3	5	5	4.0	6	3	50	6	100
164	NLR 3276	3	3	3	5	5	5	4.0	6	3	50	6	100
166	NLR 3186	0	3	3	5	5	9	4.2	6	3	50	5	83
158	NLRBL-5	0	5	3	7	5	5	4.2	6	2	33	5	83
159	NLRBL-6	0	5	3	5	5	7	4.2	6	2	33	5	83
79	VP-R297-SHB	3	3	3	5	5	7	4.3	6	3	50	5	83
91	VP-D10-SHB	3	5	3	5	3	7	4.3	6	3	50	5	83
145	CB 20166	3	3	3	5	5	7	4.3	6	3	50	5	83
58	VP-R27-SHB	3	5	3	5	5	5	4.3	6	2	33	6	100
65	VP-R107-SHB	5	5	3	3	5	5	4.3	6	2	33	6	100
107	RP-Bio-Patho-3	3	5	3	5	5	5	4.3	6	2	33	6	100
124	CR1014	3	5	3	5	5	5	4.3	6	2	33	6	100
141	CB 18586	5	3	3	5	5	5	4.3	6	2	33	6	100
59	VP-R36-SHB	1	5	5	5	3	7	4.3	6	2	33	5	83
88	VP-D6-SHB	1	5	3	7	5	5	4.3	6	2	33	5	83
148	CK 145-3	1	7	3	5	5	5	4.3	6	2	33	5	83
154	CO 51	9	7	3	7	7	9	7.0	6	1	17	1	17
	LSI	7.2	5.8	3.4	5.7	5.2	6.9						

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored $\leq 3^*$ and $\leq 5^{**}$)

TRIAL No.6: SCREENING FOR BACTERIAL BLIGHT RESISTANCE

> NSN-1

The National Screening Nursery-1 (NSN-1) consisted of 432 entries including checks. The entries were evaluated at 25 locations across the country. The entries were evaluated through artificial inoculation at all the locations. The frequency distribution of the disease scores and location severity indices are presented in Table 6.1A. The disease pressure was very high (LSI> 8.0) at Cuttack (8.1); high (LSI-6-8) at Pantnagar (7.4), Pattambi (7.0), Chiplima (6.7), Maruteru (6.6), Raipur (6.6), Navasari (6.0), IIRR (6.0) and Aduthurai (6.0); moderate (LSI-3-6) at Ludhiana (5.9), Nawagam (5.9), Varanasi (5.7), Chinsurah (5.7), Gangavathi (5.6), Masodha (5.5), Chatha (5.4), Karjat (5.3), Titabar (4.8), Karaikal (4.7), Jagtial (4.9), Sabour (4.5), Nellore (4.4), Patna (3.7), Moncompu (3.0) and very low (LSI < 3) at Bankura (2.3).

For selection of the promising entries, data of Bankura was not considered as the disease pressure was very low (LSI below 3). The promising entries which exhibited an SI of less than or equal to 4.5 and which showed a disease score of 5 at or more than 60% locations are presented in Table 6.1B. Some of the promising entries which performed better than resistant check Improved Samba Mahsuri and scored SI less than 4.1 and showed a disease score of 5 at more than 60% locations were IET # 30827, 32052, 30835, 30830, 30605, 32066, 32055, 32053 and 32052. Some other promising entries which scored an SI of less than or equal to 4.5 were IET # 30772, 32048, 29891, 30877, 31002, 30240, 30078, 30819, 31120, 32055 and 30827.

> NSN-2

The National Screening Nursery-2 (NSN-2) consisted of 643 entries including different checks. The entries were evaluated at 17 locations across the country. The entries were evaluated using artificial inoculation at all the centres. The frequency distribution of the disease scores and location severity indices are presented in Table 6.2A. None of the centres showed a very high (LSI >8) disease pressure; disease pressure was high (LSI- 6-8) at Pattambi (7.4), Raipur (7.2), IIRR (7.1), Pantnagar (6.9), Maruteru (6.6), Nawagam (6.0), Aduthurai (6.1) and Ludhiana (6.1). Moderate disease pressure (LSI 3-6) was recorded at Navasari (5.9), Gangavathi (5.8), Titabar (5.7), Masodha (5.6), Varanasi (5.3), Chatha (5.2), Sabour (4.0) and Patna (3.4). The disease pressure was very (LSI<3) low at Moncompu (2.7); hence for selection of the promising entries, data of Moncompu was not considered.

The promising entries with SI less than or equal to 4.8 and the entries which exhibited a score of 5 at or more than 60% of the locations are presented in Table 6.2B. Some of the highly promising entries which performed better than resistant check Improved Samba Mahsuri and which exhibited an SI of less than 4.6 and showed a disease score of 5 at more than 60% test locations are IET # 31645, 31710, 31566, 31627, 31723, 31637, 31665, 31621, 31646, and 31568. Some other promising entries which score an SI of less than or equal to 4.8 were IET # 32030, 31781, 30649, 31632, 31789, 31658, 31586, 31605, 32002, 31705, 31908, 32001 and 31578.

	Location/Frequency of scores (0-9)													
Score	TUA	BNK	CHN	CHP	CHT	CTK	GNV	IIRR	JGL	KJT	KRK	NUN		
0	4	45	0	0	0	0	0	0	0	0	38	0		
1	6	185	0	6	0	8	15	79	17	0	46	1		
2	0	2	0	0	0	0	0	0	0	0	0	0		
3	54	129	123	34	35	26	91	36	80	0	62	81		
4	0	0	0	0	0	0	0	0	0	0	0	0		
5	137	36	109	104	276	14	133	45	174	335	152	82		
6	0	0	0	0	0	0	0	0	0	0	0	0		
7	148	24	127	143	106	45	120	124	89	62	79	253		
8	0	0	0	0	0	0	0	0	0	0	0	0		
9	75	9	73	132	7	333	66	142	7	2	55	10		
Total	424	430	432	419	424	426	425	426	367	399	432	427		
LSI	6.0	2.3	5.7	6.7	5.4	8.1	5.6	6.0	4.9	5.3	4.7	5.9		
Screening	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α		

Table 6.1A: Location severity index (LSI) and frequency distribution of bacterial blight scores of NSN 1, *Kharif* 2023

(LSI-Location Severity Index; N-Natural; A-Artificial)

(Contd.,) Location severity index (LSI) and frequency distribution of bacterial blight scores of NSN 1, *Kharif* 2023

	Location/Frequency of scores (0-9)												
Score	MNC	MSD	MTU	NLR	SVN	DWN	PNT	PTB	PTN	RPR	SBR	TTB	VRN
0	133	0	0	0	0	0	0	6	0	0	57	0	0
1	38	0	0	46	0	0	10	0	77	0	57	1	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0
3	74	38	2	111	25	3	30	6	170	18	83	131	49
4	0	0	0	0	0	0	0	1	0	0	0	0	0
5	138	255	167	187	168	233	67	89	130	87	68	215	187
6	0	0	0	0	0	0	0	2	0	0	0	0	0
7	48	129	159	64	227	191	67	202	43	294	81	59	161
8	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	4	95	4	9	3	249	126	2	32	75	17	11
Total	431	426	423	412	429	430	423	432	422	432	421	423	408
LSI	3.0	5.5	6.6	4.4	6.0	5.9	7.4	7.0	3.7	6.6	4.5	4.8	5.7
Screening	A	Α	Α	Α	Α	Α	Α	A	Α	Α	Α	Α	Α

(LSI-Location severity Index; N-Natural; A-Artificial)

																								_
	**(č- >) I¶	83	82	83	74	70	84	83	<u>79</u>	7 9	83	75	75	63	71	79	75	83	79	75	75	13	79	
	**(E->) I¶	50	55	48	52	48	47	46	46	54	48	42	42	31	46	42	38	39	46	46	38	0	38	
	IrtoT	24	22	23	23	23	19	24	24	24	23	24	24	16	24	24	24	23	24	24	24	24	24	
	IS	3.7	3.8	3.9	4.0	4.0	4.0	4.0	4.0	4.1	4.2	4.3	4.4	4.4	4.5	4.5	4.5	4.5	4.5	4.5	4.5	7.7	4.8	
	ЛВИ	5	7	3	5	7	7	5	5	5	ю	5	7	ı	7	5	5	7	3	3	7	5	S	5.7
	LTB	1	5	3	ю	S	3	ю	5	ю	5	ю	ю	ı	3	3	3	5	3	3	5	S	e	4.8
	SBR	1	0	0	1	0	0	0	1	1	1	0	б	0	3	0	0	3	0	3	0	6	1	4.5
SUO	หมห	7	7	7	7	7	5	5	7	7	5	7	7	7	9	5	8	5	3	7	5	7	7	6.6
ocati	NLd	1	3	3	ю	1	ı	1	1	3	3	3	ю	ı	5	L	1	1	3	3	5	6	S	3.7
the l	PTB	5	5	5	7	3	7	6	7	3	7	7	5	0	6	5	5	5	7	6	5	7	S	7.0
% of	LNd	3	1	5	ю	3	5	1	3	5	7	3	7	ı	1	5	L	6	5	1	3	6	3	7.4
1 60 [°]	SWN	5	7	5	7	5	ı	5	5	7	5	7	5	7	5	5	5	5	5	5	7	6	S	5.9
thar	SAN	7	5	7	7	7	6	5	5	5	7	5	ю	5	5	5	5	7	7	5	7	7	3	6.0
more	ИГВ	3	3	1	1	1	ı	5	3	3	3	5	3	ı	1	7	3	5	3	5	3	7	S	4.4
B at	UTM	5	5	ı	5	7	5	5	7	5	5	7	5	5	5	5	7	5	5	7	7	7	S	6.6
to B	USM	5	3	5	3	5	5	7	5	3	5	3	7	5	3	7	5	3	5	5	3	6	3	5.5
re <5	MNC	0	0	0	1	0	3	0	0	0	5	0	0	1	0	0	0	0	3	0	3	7	7	3.0
SC01	ГDИ	5	3	3	7	3	3	3	3	3	7	7	3	7	3	3	7	5	3	3	3	7	S	5.9
with	КВК	1	L	0	0	0	1	3	5	6	1	5	0	0	3	3	0	3	5	6	L	6	6	4.7
<4.5)	KJT	5	I	5	5	5	I	5	5	5	5	5	5	5	5	5	5	5	5	L	5	7	7	5.3
· IS)	1 CF	1	ı	7	ı	·	5	5	з	٢	ı	٢	5	I	L	3	3	3	3	5	5	٢	3	4.9
ndex	ИВВ	1	1	5	1	1	1	1	1	1	5	1	٢	7	1	3	3	3	3	1	1	6	3	6.0
lity i	AND	7	3	5	6	٢	5	ю	5	6	ю	ю	5	5	L	3	5	3	5	3	5	6	3	5.6
ptibil	CTK	7	3	7	5	٢	3	1	1	3	Э	3	٢	L	L	6	6	6	6	6	3	6	6	8.1
usce	CHT	5	5	5	5	ю	5	5	7	5	з	5	5	ı	3	3	5	5	5	3	5	S	3	5.4
low s	СНЬ	3	5	3	1	5	ı	6	3	1	ю	5	5	ı	7	5	3		L	5	7	6	S	6.7
with	СНИ	3	3	3	3	7	3	3	3	3	3	5	3	L	3	3	6	5	3	3	3	6	S	5.7
ries v	TQA	3	3	3	ю	ю	1	7	7	ю	ю	1	б	3	5	6	5	3	6	5	5	٢	S	6.0
N 1 ent	IET No.	30827	32052	30835	30830	30605	32066	32055	32053	32052	30772	32048	29891	30877	31002	30240	30078	30819	31120	32055	30827	(S)	226 (R)	
.1B: NS	Br. No.	5110	4225	4209	5111	4019	4247	5726	4229	5215	4002	4026	4203	4210	4808	5610	4701	4012	6008	4235	4222	INI	RP Bio	ISI
Table 6	P.No.	6	329	315	10	237	351	122	333	414	220	243	309	316	256	65	31	230	84	339	326	422	430	
		_		_																				_

ICAR-IIRR - AICRPR – Annual Progress Report 2023, Vol.2, Plant Pathology

(SI-Susceptibility Index; *Promising index (PI): Percentage of locations based on no. of locations where the entry had scored <3 and <5)

3.61

Seara	Location/Frequency of scores (0-9)													
Score	ADT	CHT	GNV	IIRR	LDN	MNC	MSD	MTU	NVS					
0	1	0	0	0	0	226	0	0	0					
1	16	1	40	26	1	45	0	0	0					
2	0	0	0	0	0	0	0	0	0					
3	86	98	135	51	104	126	61	3	31					
4	0	0	0	0	0	0	0	0	0					
5	220	374	146	61	104	207	344	230	303					
6	0	0	0	0	0	0	0	0	0					
7	141	156	158	235	406	37	200	257	295					
8	0	0	0	0	0	0	0	0	0					
9	161	3	163	263	23	2	26	117	9					
Total	625	632	642	636	638	643	631	607	638					
LSI	6.1	5.2	5.8	7.1	6.1	2.7	5.6	6.6	5.9					
Screening	Α	Α	A	Α	Α	Α	Α	Α	A					

Table 6.2A: Location severity index (LSI) and frequency distribution of bacterial blight scores of NSN-2, *Kharif* '2023

(LSI-Location severity Index; N-Natural; A-Artificial)

(Contd.,) Location severity index (LSI) and frequency distribution of bacterial blight scores of NSN-2, *Kharif* ' 2023

Saara	Location/Frequency of scores (0-9)													
Score	NWG	PNT	РТВ	PTN	RPR	SBR	ТТВ	VRN						
0	0	1	6	16	0	144	0	0						
1	0	19	0	141	0	33	0	0						
2	0	0	0	0	1	0	0	0						
3	22	55	3	234	9	189	96	108						
4	0	0	0	0	0	0	0	0						
5	314	134	81	207	46	89	296	315						
6	0	0	0	0	0	0	0	0						
7	267	154	303	39	449	86	144	196						
8	0	0	0	0	0	0	0	0						
9	30	271	250	1	137	98	94	2						
Total	633	634	643	638	642	639	630	621						
LSI	6.0	6.9	7.4	3.4	7.2	4.0	5.7	5.3						
Screening	Α	A	Α	A	A	Α	Α	A						

(LSI-Location severity Index; N-Natural; A-Artificial)

Plant Pathology
N,
7
o_A
2023,
Report
al Progress
-Annu
AICRPR
ICAR-IIRR -

	**	PI (<-5)	81	87	80	75	75	80	81	75	81	88	75	75	75	69	64	75	69	69	88	63	69	69	75	13	80	
	**	(£->) I¶	63	53	40	38	44	40	44	56	44	25	38	25	31	44	27	44	38	38	25	38	31	31	25	0	47	
		IrtoT	16	15	15	16	16	15	16	16	16	16	16	16	16	16	11	16	16	16	16	16	16	16	16	16	15	-
		IS	3.9	3.9	4.0	4.3	4.3	4.3	4.4	4.5	4.5	4.5	4.6	4.6	4.6	4.7	4.7	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	7.8	4.6	
		ΝΗΛ	7	,	З	5	7	2	5	С	5	5	5	7	3	З	1	7	5	Э	5	5	ε	7	5	S	3	5.3
		LTB	ŝ	с С	5	2	ŝ	S	с	с	5	ŝ	e	5	L	e	5	5	ŝ	7	5	ŝ	5	5	5	7	S	5.7
		SBR	3	Э	5	1	0	5	Э	Э	Э	0	0	0	5	0	З	3	5	Э	5	0	0	0	0	7	S	4.0
		във	З	С	7	5	7	5	5	2	7	5	7	7	7	7	7	Э	7	7	5	7	7	5	7	6	7	7.2
	(PTN	1	1	0	5	1	3	1	3	3	5	1	1	7	1	-	3	ŝ	3	З	3	5	5	3	6	S	3.4
	8 (U-Y	PTB	L	5	7	5	5	2	6	5	L	5	6	5	7	5	0	7	6	7	6	7	5	6	5	7	7	7.4
	core	TNP	-	с	1	-	З	с	З	с	Э	5	7	5	1	6	1	З		5	1	7	6	5	5	6	3	6.9
	7 OI S	JWN	5	5	5	2	5	5	7	5	Э	5	5	5	5	5	5	7	5	7	5	5	5	5	7	6	S	5.0
	lency	SAN	5	2	7	2	5	2	7	2	3	7	7	5	5	7	7	5	7	7	5	3	2	5	7	7	S	0.9
	Frequ	UTM	3	7	5	3	5		5	7	5	5	5	5	5	5		5	5	5	6	5	5	6	5	7		.6
	ITION/	asw	5	5	5	e	e	5	5	e	5	5	5	5	5	e	5	5	5	5	5	2	ŝ	2	3	6	8	.6 6
	LOC2	ГЛИ	~ ~	~ ~	ŝ	_	~ ~	~ ~	ŝ	~	6	~ ~	m	~ ~	S	ŝ		<u> </u>	-	<u> </u>	~ ~	2	~	m.		2	~	.1 5
		икк		~						~			~		~	-	_	~					-		Ì.	, (~	1 6
												•	~		~	~		~``	~					~	~ `) (~	8 7
			~	2) 2)	-		5		5	5	5	5		-	2	5	-	5		2	5	~ ~	~	2	<u> </u>	5	~	.2 5.
			ŝ			5	Ś		 		5	0	5	, 		с. С	` ı		, W		5	ŝ	S	`	5	÷ (6	.1 5
-													-	`											• •			9
		IET N	31645	31710	31566	31627	31723	31637	31665	31621	31646	31568	32030	31781	30649	31632	31789	31658	31586	31605	32002	31705	31908	32001	31578	(S)	26 (R)	
		Br. No.	4133	4337	3808	4113	4353	4124	4153	4107	4134	3812	6223	4651	3801	4119	4660	4146	3832	3853	6117	4332	5524	6116	3824	INI	RPBio2	ISI
		P. No.	159	226	~	139	242	150	179	133	160	12	619	366	1	145	375	172	32	53	482	221	402	481	24	633	641	

Table 6.2B: NSN-2 entries with low susceptibility index (SI <4.8) with score <5 to BB at more than 60% of the locations

(SI-Susceptibility Index; *Promising index (PI): Percentage of locations based on no. of locations where the entry had scored <3 and <5)

> NSN-Hills

The National Screening Nursery-Hills (NSN-Hills) consisted of 85 entries including different checks. The entries were evaluated at 4 locations across the country. The entries were evaluated using artificial inoculation at all the four locations. The frequency distribution of the disease scores and location severity indices are presented in Table 6.3A. The disease pressure was very high (LSI- >8.0) at Cuttack (8.9) and IIRR (8.2), while it was high (LSI 6-8) at Pantnagar (7.5). Moderate disease pressure was recorded at Karjat (4.9). For selection of best entries, the disease reactions from all the locations were considered. The promising entries which showed an SI of less or equal to 6.5 and which exhibited a disease score of 5 at or more than 50% locations are presented in Table 6.3B. None of the entries performed better than resistant check Improved Samba Mahsuri. Some of the promising entries were IET # 31431, 28906, 31393, 31401, 31381, 31391, and 31404.

Table 6.3A: Location severity index (LSI) and frequency distribution of bacterial blight scores of NSN-Hills, *Kharif* 2023

Saoro		Location/Freque	ncy of scores (0-9))
Score	СТК	IIRR	KJT	PNT
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	2	13	3
4	0	0	0	0
5	0	5	60	16
6	0	0	0	0
7	3	18	10	22
8	0	0	0	0
9	80	60	0	44
Total	83	85	83	85
LSI	8.9	8.2	4.9	7.5
Screening	Α	A	Α	Α

(LSI-Location severity Index; N-Natural; A-Artificial)

Table 6.3B: NSN-Hills entries with low susceptibility index (SI \leq 5.5) with score \leq 5 to BB at or more than 50% of the locations

			L	ocation/l of scor	Frequences (0-9)	cy		I	*	**(*	()**
P. No.	Br. No.	IET No.	CTK	IIRR	KJT	TNT	SI	Tot	<≡3	PI (<-?	S=>	;->) Id
71	2705	31431	9	7	3	3	5.5	4	2	50	2	50
2	2402	28906	9	7	3	5	6.0	4	1	25	2	50
27	2316	31393	9	5	5	5	6.0	4	0	0	3	75
35	2503	31401	9	-	5	5	6.3	3	0	0	2	67
13	2302	31381	9	3	5	9	6.5	4	1	25	2	50
25	2314	31391	9	9	3	5	6.5	4	1	25	2	50
39	2507	31404	9	5	5	7	6.5	4	0	0	2	50
76	TN1	(S)	9	9	7	9	8.5	4	0	0	0	0
84 RP-Bio-226 (R)			9	3	5	3	5.0	4	2	50	3	75
	LSI		8.9	8.2	4.9	7.5						

(SI-Susceptibility Index; *Promising index (PI): Percentage of locations based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> NHSN

The National Hybrid Screening Nursery (NHSN) consisted of 120 entries including different checks. The entries were evaluated at 20 locations across the country. The entries were evaluated using artificial inoculation at all the centres. The frequency distribution of the disease scores and location severity indices are presented in Table 6.4A. The disease pressure was very high (LSI > 8) at Cuttack (8.1) and Pantnagar (8.0); high (LSI-6-8) at Pattambi (7.7), Aduthurai (6.8), Maruteru (6.7), Ludhiana (6.6), IIRR (6.5), Chinsurah (6.4), Masodha (6.3), Nawagam (6.1); moderate (LSI-3-6) at Navasari (5.8), Varanasi (5.7), Chatha (5.4), Titabar (5.3), Patna (5.0), Karjat (4.7), Gangavathi (4.7), Arundatinagar (3.3) and very low (LSI < 3) at Bankura (2.1) and Moncompu (2.4). The promising entries with SI less than 5.5 and which exhibited a score of 5 at or more than 50% of the locations are presented in Table 6.4B. Three entries viz., IET # 31450, 31480, and 31471 performed better than the resistant check Improved Samba Mahsuri (SI 5.0). Other promising entries were which showed an SI of less than or equal to 5.5 were IET # 31460, 31451, 31495, 31449, 31459, 31436 and 31489.

Table 6.4A: Location severity index (LSI) and frequency distribution of bacterial blight scores of NHSN, *Kharif* 2023

Score				Location	/Freque	ncy of sc	ores (0-9)		
	ADT	ARD	BNK	CHN	CHT	СТК	GNV	IIRR	KJT	LDN
0	0	0	0	0	0	0	0	0	0	0
1	0	0	57	0	0	4	6	19	0	3
2	0	0	29	0	0	0	0	0	0	0
3	6	11	15	21	22	2	46	11	29	10
4	0	0	11	0	0	0	0	0	0	0
5	41	2	2	31	57	7	41	6	81	15
6	0	0	1	0	0	0	0	0	0	0
7	29	0	4	32	39	15	14	29	9	73
9	43	0	1	36	2	91	13	53	1	19
Total	119	13	120	120	120	119	120	118	120	120
LSI	6.8	3.3	2.1	6.4	5.4	8.1	4.7	6.5	4.7	6.6
Screening	A	A	A	Α	Α	A	A	A	A	Α

(LSI-Location severity Index; N-Natural; A-Artificial)

(Contd.,) Location severity index (LSI) and frequency distribution of bacterial blight scores of NHSN, *Kharif* 2023

Score			Ι	location	/Frequei	ncyofsc	ores (0-9)		
	MNC	MSD	MTU	NVS	NWG	PNT	РТВ	PTN	ТТВ	VRN
0	48	0	0	0	0	0	0	0	0	0
1	8	0	0	0	0	0	0	7	0	0
2	0	0	0	0	0	0	0	0	0	0
3	25	10	0	7	3	5	0	27	28	16
4	0	0	0	0	0	0	0	0	0	0
5	33	40	43	55	56	13	16	47	60	48
6	0	0	0	0	0	0	0	0	0	0
7	6	49	48	57	55	20	49	36	20	46
9	0	20	25	0	6	82	55	3	12	5
Total	120	119	116	119	120	120	120	120	120	115
LSI	2.4	6.3	6.7	5.8	6.1	8.0	7.7	5.0	5.3	5.7
Screening	Α	Α	Α	Α	A	Α	A	Α	Α	Α

(LSI-Location severity Index; N-Natural; A-Artificial)

ICAR-IIRR - AICRPR - Annual Progress Report 2023, Vol.2, Plant Pathology

1			-	-	1		-			-				-	
	**	*(č->) I ¶	88	76	71	71	71	71	65	53	59	63	12	72	
	**	*(E->) IA	35	35	35	29	24	18	24	29	18	25	0	44	
		IntoT	17	17	17	17	17	17	17	17	17	16	17	18	
SIII		IS	4.3	4.5	4.9	5.1	5.2	5.2	5.4	5.5	5.5	5.5	8.2	5.0	
Juan		ΝΗΛ	Э	7	7	5	5	5	5	7	5	7	S	7	5.7
		TTB	3	3	з	5	5	З	5	3	5	3	٢	S	5.3
/0 UI		PTN	5	5	7	7	3	5	3	5	1	5	6	S	5.0
		PTB	5	7	7	Г	7	7	6	7	6	5	6	6	7.7
c una		TNP	5	5	5	6	5	7	5	7	7	6	6	3	8.0
INIT	((9MN	7	5	5	5	5	5	7	7	5	5	6	5	6.1
atu	5-0) sa	SAN	5	5	5	7	7	7	5	5	5	5	7	3	5.8
	score	UTM	5	5	5	5	5	5	5	5	7	5	6	7	6.7
2	ncy of	asw	5	7	7	5	7	7	3	7	7	5	6	3	6.3
SCULE	rənbə	ГDИ	7	1	3	3	5	5	7	7	З	7	6	3	6.6
MILLI	on/Fr	КJT	5	5	5	5	5	5	5	3	5	3	٢	S	4.7
(0.00	ocatio	ивв	1	1	1	1	3	1	1	1	1	7	6	3	6.5
	L	ΛΝЭ	3	3	3	3	3	5	3	3	5	3	6	3	4.7
Vanii		CLK	1	7	6	6	6	6	6	6	6	ı	6	6	8.1
IILY I		CHT	5	3	3	3	7	5	7	5	7	3	S	3	5.4
<u>nun</u>		КНЭ	3	3	3	3	5	3	5	3	5	6	6	3	6.4
) on c		ARD	ı	ı	1	ı	ı	ı	ı	ı	ı	ı	·	S	3.3
IUW		TQA	5	5	5	5	3	5	7	6	7	7	6	6	6.8
INIA SAINI		IET No.	31450	31480	31471	31460	31451	31495	31449	31459	31436	31489		6 (R)	
TO VICITIVI . CIT.		Br. No.	2905	3012	3001	2920	2908	3103	2904	2919	2806	3023	TN1 (S	RP Bio 22(ISI
TAUIC O		P. No.	23	79	68	47	35	97	22	46	9	90	110	118	

more than 50% of the locations score <5 to RR at ar contihility index (SI <5 5) with 2 Table 6 4R• NHSN entries with low

(SI-Susceptibility Index; *Promising index (PI): Percentage of locations based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

> DSN

The Donor Screening Nursery (DSN) consisted of 212 entries including different checks. The entries were evaluated at 20 locations across the country. The entries were evaluated using artificial inoculation conditions. The frequency distribution of the disease scores and location severity indices are presented in Table 6.5A. In none of the centres disease pressure was very high (LSI > 8); it was high (LSI- 6-8) at Pantnagar (7.5), Pattambi (7.3), Aduthurai (7.3), Raipur (7.3), Maruteru (6.8), Cuttack (6.5), IIRR (6.5); moderate (LSI- 3-6) at Chiplima (5.9), Nawagam (5.9), Varanasi (5.9), Karjat (5.7), Gangavathi (5.5), Navasari (5.5), Titabar (5.5), Chatha (5.4), Ludhiana (5.3), Masodha (5.1), Patna (4.4), Sabour (4.0) and very low (LSI- \leq 3) at Moncompu (2.7).

For selection of the promising entries, data of Moncompu was not considered where the disease pressure was very low. The promising entries with SI less than or equal to 5.0 and which exhibited a score of 5 at or more than 65% of the locations are presented in Table 6.5B. Some of the promising donors included VP-R297-SHB, RP-Bio-Patho-4, RP-Bio-Patho-3, VP-R294-SHB, VP-R261-SHB, VP-R44-SHB, VP-R262-SHB, RP-Bio-Patho-9, VP-R249-SHB, NLRBL-7, VP-R25-SHB, VP-R45-SHB, VP-D6-SHB, VP-R36-SHB, RTCNP-97, VP-R289-SHB, VP-R78-SHB, 19345, NLRBL-2, NLRBL-8, RP-Bio-Patho-5, NLRBL-3, NLRBL-4 and CK 145-3.

Table 6.5A: Location severity index (LSI) and frequency distribution of bacterial blight scores of DSN, *Kharif* '2023

Score]	Location	/Fre que	ncyofsc	ores (0-9)		
	ADT	СНР	CHT	СТК	GNV	IIRR	KJT	LDN	MNC	MSD
0	0	0	0	0	0	0	0	0	75	0
1	3	7	0	0	7	26	0	1	13	0
2	0	0	0	0	0	0	0	0	0	0
3	14	30	28	5	51	16	0	66	46	41
4	0	0	0	0	0	0	0	0	0	0
5	36	73	105	67	65	23	136	36	63	114
6	0	0	0	0	0	0	0	0	0	0
7	44	55	71	108	40	60	59	90	14	46
8	0	0	0	0	0	0	0	0	0	0
9	109	39	0	29	43	81	4	2	1	5
Total	206	204	204	209	206	206	199	195	212	206
LSI	7.3	5.9	5.4	6.5	5.6	6.5	5.7	5.3	2.7	5.1
Screening	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α

(LSI-Location severity Index; N-Natural; A-Artificial)

Score		0]	Location	/Freque	ncyofsc	ores (0-9))		
	MTU	NVS	NWG	PNT	РТВ	PTN	RPR	SBR	ТТВ	VRN
0	0	0	0	0	1	0	0	37	0	0
1	0	0	0	5	0	30	0	5	2	0
2	0	0	0	0	0	0	0	0	0	0
3	0	21	4	12	0	45	13	66	34	22
4	0	0	0	0	0	0	0	0	0	0
5	71	118	102	33	42	96	25	51	91	72
6	0	0	0	0	0	0	0	0	0	0
7	74	70	102	37	87	35	89	29	54	83
8	0	0	0	0	0	0	0	0	0	0
9	49	1	0	120	77	2	85	20	15	15
Total	194	210	208	207	207	208	212	208	196	192
LSI	6.8	5.5	5.9	7.5	7.3	4.4	7.3	4.0	5.5	5.9
Screening	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α

(Contd.,) Location severity index (LSI) and frequency distribution of bacterial blight scores of DSN, *Kharif* ' 2023

(LSI-Location severity Index; N-Natural; A-Artificial)

Plant Pathology
Vol.2,
2023,
Report
Progress
– Annual
· AICRPR
ICAR-IIRR -

	**	°(č- >) Iq	95	84	79	74	95	72	84	74	83	84	89	74	79	68	71	67	97	68	79	74	63	74	68	74	9	63	
	* *	*(E->) I¶	47	47	37	42	32	39	32	32	33	37	26	32	42	32	29	33	32	32	26	26	26	21	32	26	0	26	
		IntoT	19	19	19	19	19	18	19	19	18	19	19	19	19	19	7	18	19	19	19	19	19	19	19	19	16	19	
S		IS	3.9	4.4	4.4	4.5	4.5	4.6	4.6	4.6	4.7	4.7	4.7	4.7	4.8	4.8	4.9	4.9	4.9	4.9	4.9	4.9	4.9	4.9	5.0	5.0	8.1	5.3	
ation		ЛВИ	5	5	2	2	5	2	6	5	ŝ	З	3	7	7	7	,	2	6	2	5	7	5	7	5	5	7	7	5.9
e loc		LLB	С	З	5	5	с	З	с	5	5	5	5	5	3	5	5	5	Э	1	Э	3	5	3	3	5	6	S	5.5
of th		SBR	С	З	0	7	с	З	5	0	5	З	3	0	3	0	0	5	Э	с	0	0	0	0	3	3	6	1	4.0
65%		ЯРЯ	e	З	5	З	5	6	5	5	5	7	5	5	3	5	6	5	5	5	5	5	7	3	7	7	6	S	7.3
than		PTN		З	5	5	5	1	-	З	-	5	7	1	5	5		-	5	7	5	5	5	5	3	5	6	S	4.4
nore		PTB	5	5	5	7	5	7	L	7		5	5	7	5	5	•	2	7	2	5	5	7	5	7	5	6	6	7.3
t or r		TNP	5	Э	Э	Э	6	1	2	1	6	6	5	5	6	3	•	Э	З	7	6	6	1	6	6	6	6	S	7.5
BB a		9 MN	5	7	5	5	с	7	5	5	5	5	5	5	5	5	•	2	5	с	5	5	5	5	5	5	7	7	5.9
<5 to		SAN	ω	5	7	З	с	5	с	5	ŝ	5	5	5	5	7	ŝ	с	5	5	5	5	5	7	5	5	7	3	5.5
ore <		UTM	5	5	5	5	5	1	5	5	5	5	5	6	7	7	5	5	5	5	5	5	7	5	5	7	ı	7	6.8
ith so		asw	с	5	ŝ	7	5	с	5	ŝ	L	ŝ	3	5	3	7	,	S	5	с	3	3	7	5	3	7	6	3	5.1
≤5) wi		ГDИ	С	Э	З	Э	З	Э	Э	З	Э	Э	3	3	3	Э	•	2	7	e	З	3	З	7	7	3	7	S	5.3
(SI s	(0-0)	KJT	5	5	5	5	5	5	5	5	7	5	5	5	5	5	,	,	5	5	L	5	5	5	5	5		S	5.7
ndex	cores	ивв	S						-	-	m	7	1	3	5	ŝ	•		e	с	5	7	-	7	6	5	6	3	6.5
ility i	ofs	AND	5	З	с	З	5	5	5	2	с	5	6	5	5	7	•	З	2	2	6	3	L	5	7	1	6	3	5.6
eptibi	lency	CTK	~	2	6	2	5	5	5	2	5	5	5	7	6	L	5	2	e	5	L	7	L	5	5	5	ı	7	6.5
s us c	Frequ	CHT	5	5	5	З	5	2	5	5	5	З	5	7	3	З	7	5	e	5	5	7	e	5	5	3	7	S	5.4
low	tion/l	CHb		З	7	1	5	5	m	7	5	ŝ	5	3	3	5	,	c	5	5	ς	5	5	1	1	7	S	7	5.9
s with	Loca	TQA	n	6		5	5	5	5	6	5	ŝ	5	3	3	ŝ	•	6	5	2	5	5	6	5	1	Э	6	6	7.3
6.5B: DSN entries		Designations	VP-R297-SHB	RP-Bio-Patho-4	RP-Bio-Patho-3	VP-R294-SHB	VP-R261-SHB	VP-R44-SHB	VP-R262-SHB	RP-Bio-Patho-9	VP-R249-SHB	NLRBL-7	VP-R25-SHB	VP-R45-SHB	VP-D6-SHB	VP-R36-SHB	RTCNP-97	VP-R289-SHB	VP-R78-SHB	19345	NLRBL-2	NLRBL-8	RP-Bio-Patho-5	NLRBL-3	NLRBL-4	CK 145-3	TN1 (S)	RP-Bio-226 (R)	LSI
Table		P.No.	79	108	107	78	74	61	75	113	73	160	57	92	88	59	132	LL	63	49	155	161	109	156	157	148	188	196	

ŕ f the 650/2 the + <5 to RR 44 Ĩ Ř .; tihilita ith lo twin K ED. DON

(SI-Susceptibility Index; *Promising index (PI): Percentage of locations based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

3.69

***** TRIAL No.7: RICE TUNGRO VIRUS DISEASE (RTD)

> NSN-1

The national screening nursery 1 (NSN-1) trial consisting of 432 entries including checks was proposed and conducted at 2 locations viz., Coimbatore and IIRR. At both the locations the nursery was evaluated artificially by insect transmission tests in the glass house. The frequency distribution of disease scores and location severity indices are presented in Table 7.1A. The disease pressure recorded was high with LSI 6.1 at both the locations

Table	7.1A:	Location	severity	index	(LSI)	and	frequency	distribution	of	Rice	tungro
diseas	se score	es of NSN-	1, Kharif	2023							_

Score	Location/Frequ	uency of scores (0-9)
Score	СВТ	IIRR
1	0	0
3	13	19
5	196	145
7	184	264
9	27	0
Total	421	428
LSI	6.1	6.1
Screening method	Α	A

(N-Natural; A-Artificial)

The entries performed better than the resistant check Vikramarya and showed resistance reaction to rice tungro disease are IET 32067, IET 32067, IET 32067, IET 31119, IET 30657, IET 32036, IET 29820, IET 29708, IET 30604, IET 30932, IET 30917, IET 30942 and IET 30735 (Table 7.1B).

Table 7.1B: Promising entries with low susceptibility index (<=4.0) and high PI in NSN-1 to Rice tungro disease, *Kharif* 2023

P.No	Dr No	IET No.	Location/Frequency of scores (0-9)											
F .1NU	DI. 110.	IEI NO.	CBT	IIRR	SI	Total	<=3*	PI (<-3)**	<=5*	PI (<-5)**				
352	4248	32067	-	3	3.0	1	1	100	1	100				
78	6002	31119	5	3	4.0	2	1	50	2	100				
174	3449	30657	5	3	4.0	2	1	50	2	100				
179	3454	32036	3	5	4.0	2	1	50	2	100				
204	3606	29820	5	3	4.0	2	1	50	2	100				

DNo	Dr No	IET No			Lo	ocation/l	Frequen	cy of scores (0-9)	
F.INO	DI. 190.	1E I NO.	CBT	IIRR	SI	Total	<=3*	PI (<-3)**	<=5*	PI (<-5)**
207	3609	29708	5	3	4.0	2	1	50	2	100
228	228 4010 30604 286 4512 30932		5	3	4.0	2	1	50	2	100
286	4512	30932	5	3	4.0	2	1	50	2	100
295	4521	30917	5	3	4.0	2	1	50	2	100
302	4528	30942	5	3	4.0	2	1	50	2	100
361	3703	30735	5	3	4.0	2	1	50	2	100
422	22 TN1		7	7	7.0	2	0	0	0	0
423 Vikramaraya			3	3	3.0	2	2	100	2	100
	LSI		6.1	6.1						

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored ≤ 3 and ≤ 5)

> NSN-2

The national screening nursery 2 (NSN-2) trial consisting of 643 entries including checks was conducted only at IIRR and only one line did not germinate. The disease pressure recorded was high with LSI 6.2 (Table:7.2A)

Table 7.2A: Location severity index (LSI)	and frequency	distribution	of Rice tungro
disease scores of NSN-2, Kharif 2023			

Score	Location/Frequency of scores (0-9)
	IIRR
1	0
3	29
5	203
7	410
9	0
Total	642
LSI	6.2
Screening method	Α

(N-Natural; A-Artificial)

Out of 642 lines tested, only 29 lines showed score 3 and 203 lines showed 5 score against RTD. The lines that were succumbed to RTD were 410. Best performing lines included IET Nos 31570, 31582, 31598, 31504, 31514, 31523, 31527, 31528, 31536, 31618, 31660, 31669, 31681, 31689, 31716, 31720, 31807, 31836, 31748, 31107, 31995, 31934, 31935, 31952, 31863 and 31885 (Table 7.2B).

P.No.	Br. No.	IET No.	IIRR
15	3815	31570	3
28	3828	31582	3
45	3845	31598	3
67	3504	31504	3
77	3514	31514	3
87	3524	31523	3
91	3528	31527	3
92	3529	31528	3
100	3537	31536	3
130	4104	31618	3
174	4148	31660	3
183	4157	31669	3
196	4307	31681	3
204	4315	31689	3
234	4345	31716	3
239	4350	31720	3
267	4915	31807	3
298	4946	31836	3
330	4615	31748	3
443	5806	31107	3
474	6109	31995	3
512	5017	31934	3
513	5018	31935	3
532	5037	31952	3
555	5408	31863	3
586	5439	31885	3
634	Vikramaraya		3

Table 7.2B: NSN-2 entries with low susceptibility index (SI \leq 3) against rice tungro disease, *Kharif*, 2023.

≻ NSN-H

Eighty-six entries were screened against rice tungro disease at IIRR under high disease pressure with LSI 6.3. Out of 86 entries tested only 4 lines (IET 29659, IET 28906, IET 30513 and Vivekdhan 62) shown to be resistant for RTD (Table 7.3A).

Score	Location/Frequency of scores (0-9)
	IIRR
1	0
3	4
5	21
7	61
9	0
Total	86
LSI	6.3
Screening method	Α

Table 7.3A: Location severity index (LSI) and frequency distribution of rice tungro disease scores of NSN-H, *Kharif* 2023

➤ (N- Natural; A- Artificial)

> NHSN

The National Hybrid Screening Nursery (NHSN) consisted of 120 entries including checks. The entries were tested at two centers viz., Coimbatore and IIRR. The frequency distribution of disease scores and LSI are presented in Table 7.4A. The disease pressure was moderate at CBT (LSI 5.9) and high at IIRR (LSI 6.5).

Table 7.4A: Location severity index (LSI) and frequency distribution of Rice tungro disease scores of NHSN, *Kharif* 2023

Score	Location/Frequency of scores (0-9)							
Score	СВТ	IIRR						
1	0	0						
3	11	3						
5	52	24						
7	51	90						
9	6	0						
Total	120	117						
LSI	5.9	6.5						
Screening method	Α	Α						

(N- Natural; A- Artificial)

For the selection of promising entries both the locations were taken into consideration. The best entries which showed overall SI< 5.0 are listed in Table 7.4B. The promising entries are IET 31441, IET 31432, IET 31435, IET 31440, IET 31476, IET 31485 and IET 31497.

			Location/Frequency of scores (0-9) SI Ξ		=3 <i>*</i>	-3)**	÷2*	-5)**		
P. No. Br. No.	Br. No.	IET No.	СВТ	IIRR		To	Ÿ	PI (<	V	PI (<
12	2812	31441	3	5	4.0	2	1	50	2	100
1	2801	31432	5	5	5.0	2	0	0	2	100
5	2805	31435	5	5	5.0	2	0	0	2	100
11	2811	31440	5	5	5.0	2	0	0	2	100
74	3007	31476	5	5	5.0	2	0	0	2	100
85	3018	31485	5	-	5.0	1	0	0	1	100
100	3106	31497	5	5	5.0	2	0	0	2	100
111 Vikramaraya		3	3	3.0	2	2	100	2	100	
110	Т	N1	7	7	7.0 2		0	0	0	0
	LSI		5.9	6.5			-			

Table 7.4B: Promising entries with low susceptibility index (<=5.0) and high PI in NHSN to Rice tungro disease, *Kharif* 2023.

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored ≤ 3 and ≤ 5)

> DSN

Donor screening nursery (DSN) comprising of 212 entries including checks were tested at Coimbatore and IIRR. The frequency distribution of disease scores and LSI are presented in Table 7.5A. The disease pressure was high at IIRR (LSI 6.3) and moderate at Coimbatore (LSI 6.0).

Table 7.5A: Location severity index	(LSI) and	frequency	distributio n	of Rice tu	ingro
disease scores of DSN, <i>Kharif</i> 2023					

Score	Location/Frequency of scores (0-9)					
Score	СВТ	IIRR				
1	0	0				
3	2	9				
5	106	54				
7	95	145				
9	2	0				
Total	205	208				
LSI	6.0	6.3				
Screening method	Α	Α				

(N- Natural; A- Artificial)

The DSN entries that showed a moderate level of resistance to rice tungro disease are listed in Table 7.5B. The promising entries included are VP-R289-SHB, CB 17502, WGL 1869 and 4706.

		Location/Frequency of scores (0-9)			Tatal	<2*	PI (<-3)**	<=5*	DI (~ 5)**
P.No.	Br.No.	СВТ	IIRR	SI	Totai	<-3"	FI (\- 3)**	<-3"	FT (<- 5)**
77	VP-R289-SHB	5	3	4.0	2	1	50	2	100
140	CB 17502	5	3	4.0	2	1	50	2	100
176	WGL 1869	5	3	4.0	2	1	50	2	100
202	4706	3	5	4.0	2	1	50	2	100
188	TN1	7	7	7.0	2	0	0	0	0
189	Vikramarya	5	3	4.0	2	1	50	2	100
	LSI	6.0	6.3						

Table 7.5B: Promising entries with low susceptibility index (<=4.0) and high PI in DSN to rice tungro disease, *Kharif* 2023

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored ≤ 3 and ≤ 5)

♦ GLUME DISCOLOURATION

Glume discolouration (GD) was observed at four locations viz., Chatha, Lonavala, Navasari, and Nawagam during *Kharif* 2023. National screening nurseries were tested for GD under natural conditions at all the four locations.

> NSN-1

In NSN-1, 438 entries including checks were screened against glume discolouration under natural conditions. Moderate disease pressure was observed at Navasari (LSI 5.4), Nawagam (LSI 5.1), Chatha (LSI 4.8) and Lonavala (LSI 3.6). The frequency distribution of glume discolouration scores are presented in the below table along with location severity indices.

Location severity index (LSI) and frequency distribution of glume discoloration scores of NSN-1, *Kharif* 2023

Saara	Location/Frequency of scores (0-9)								
Score	СНТ	LNV	NVS	NWG					
1	0	0	0	0					
3	76	303	94	70					
5	230	121	159	277					
7	48	0	176	81					
9	0	0	0	1					
Total	354	424	429	430					
LSI	4.8	3.6	5.4	5.1					
Screening method	Ν	Ν	Ν	Ν					

(N- Natural; LSI= Location Severity Index)

The promising entries found in NSN 1 for glume discolouration are IET nos. 30641, 30966, 30902, 30868, 31130, 30658, 30555, 29284 (R), 29290 (R), 29820, 29708, 30918, 30704, 30573, 31042, 31096, 28076, 32060, 29257 (R) and 3204.

Promising	entries with	low susceptibility	index (<	=3.8) a	ınd higl	h PI in NS	N-1 to	glume
discoloratio	on, <i>Kharif</i> 2	023						

P. No.	Location/Frequency of scores (0-9)SI		tal	=3 *	->) **	*S=	->) **				
		CHT	LNV	NVS	NWG	~~~	Tc	Ÿ	3) 3	Ÿ	PI 5)
127	30641	-	3	3	3	3.0	3	3	100	3	100
251	30966	3	3	3	3	3.0	4	4	100	4	100
275	30902	3	3	3	3	3.0	4	4	100	4	100
320	30868	-	3	3	3	3.0	3	3	100	3	100
81	31130	5	3	3	3	3.5	4	3	75	4	100
134	30658	3	3	5	3	3.5	4	3	75	4	100
169	30555	3	3	5	3	3.5	4	3	75	4	100
184	29284 (R)	3	3	5	3	3.5	4	3	75	4	100
188	29290 (R)	3	3	3	5	3.5	4	3	75	4	100
204	29820	5	3	3	3	3.5	4	3	75	4	100
207	29708	3	3	5	3	3.5	4	3	75	4	100
293	30918	3	3	5	3	3.5	4	3	75	4	100
359	30704	3	3	3	5	3.5	4	3	75	4	100
383	30573	3	3	3	5	3.5	4	3	75	4	100
410	31042	3	3	3	5	3.5	4	3	75	4	100
98	31096	5	-	3	3	3.7	3	2	67	3	100
119	28076	-	3	3	5	3.7	3	2	67	3	100
121	32060	-	3	5	3	3.7	3	2	67	3	100
183	29257 (R)	-	3	3	5	3.7	3	2	67	3	100
242	32047	-	5	3	3	3.7	3	2	67	3	100
422		7	3	5	9	6.0	4	1	25	2	50
	LSI	4.8	3.6	5.4	5.1						

SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored ≤ 3 and ≤ 5)

> NSN-2

The national screening nursery 2 (NSN-2) trial consisting of 643 entries including checks was conducted only at Chatha, Navasari and Navagam. The disease pressure recorded was moderate at Nawagam (LSI 5.2) Chatha (LSI 5.1) and Navasari (4.8).

Location severity index (LSI) and frequency distribution of glume discoloration scores of NSN-2, *Kharif* 2023

Score	Loc	ation/Frequency of scores	(0-9)
Score	СНТ	NVS	NWG
1	2	3	0
3	99	183	134
5	262	320	318
7	126	131	180
9	0	1	1
Total	489	638	633
LSI	5.1	4.8	5.2
Screening method	N	Ν	Ν

(N- Natural; LSI- Location Severity Index)

Best performing lines against glume discolouration included IET Nos. 31582, 31589, 31642, 31719, 31725, 31729, 31816, 31819, 31821, 31980, 31992, 31996, 32000, 31946, 31869 and 31856.

			Locat of sco	ion/Fre ores (0-	quency 9)		al	*(, ∧ *		
P. No.	Br. No.	IET No.	СНТ	NVS	NWG	SI	Tot	~ ~	PI (- 3)*	¥=>	PI (- 5)*
28	3828	31582	-	-	3	3.0	1	1	100	1	100
35	3835	31589	-	3	3	3.0	2	2	100	2	100
155	4129	31642	-	3	3	3.0	2	2	100	2	100
237	4348	31719	-	3	3	3.0	2	2	100	2	100
244	4355	31725	-	-	3	3.0	1	1	100	1	100
248	4359	31729	-	3	3	3.0	2	2	100	2	100
277	4925	31816	-	3	3	3.0	2	2	100	2	100
280	4928	31819	-	3	3	3.0	2	2	100	2	100
282	4930	31821	-	3	3	3.0	2	2	100	2	100
456	5819	31980	-	3	3	3.0	2	2	100	2	100
470	6105	31992	-	3	3	3.0	2	2	100	2	100
475	6110	31996	-	3	3	3.0	2	2	100	2	100
480	6115	32000	3	3	3	3.0	3	3	100	3	100
525	5030	31946	-	3	3	3.0	2	2	100	2	100
567	5420	31869	3	3	3	3.0	3	3	100	3	100
422	5305	31856	1	5	3	3.0	3	2	67	3	100
633	Т	'N1	7	5	7	7 6.3 3 0 0 1				33	
	LSI		5.1	4.8	5.2						

Promising entries with low susceptibility	index (<=3.0) and h	igh PI in NSN-2 to glume
discoloration, <i>Kharif</i> 2023		

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored ≤ 3 and ≤ 5)

NSN-H: A total of 86 lines from NSN hills nurseries were screened against GD only at Lonavala location where the disease pressure was moderate (LSI 3.3). Out of 86 lines tested, 73 lines showed score 3 and 10 lines showed 5 score against GD.

Location severity index (LSI) and frequency distribution of glume discoloration scores of NSN-H, *Kharif* 2023

Score	Location/Frequency of scores (0-9)
Store	LNV
1	0
3	73
5	10
7	2
9	0
Total	85
LSI	3.3
Screening method	Ν

(N- Natural; LSI- Location Severity Index)

> NHSN

National Hybrid Screening Nursery (NHSN) consisted of 120 entries including checks were screened for glume discolouration reaction at 4 locations. The screening was done by natural conditions at Chatha, Lonavla, Navasari and Nawagam. The frequency distribution of disease scores and location severity indices are presented below. The disease pressure was moderate at all locations viz., Nawagam (LSI 5.5), Chatha (LSI 4.8), Navasari (LSI 4.7) and Lonavala (LSI 3.3).

1111511, <i>Milling</i> 2025											
Saoro	Location/Frequency of scores (0-9)										
Score	CHT	LNV	NVS	NWG							
1	2	0	1	0							
3	22	102	28	11							
5	72	17	77	71							
7	14	1	13	38							
9	0	0	0	0							
Total	110	120	119	120							
LSI	4.8	3.3	4.7	5.5							
Screening method	Ν	Ν	Ν	Ν							

Location severity index(LSI)	and frequency	distributio n	of glume	discoloration	scores of
NHSN, Kharif 2023					

(N- Natural; LSI- Location Severity Index)

Some of the promising entries selected from NHSN are IET Nos. 31478, 31436, 31458, 31466, 31468, 31490, 31437, 31439, 31445, 31446, 31448, 30556, 31460, 31472, 31476, 31479, 31481 and 31500.

Promising entries with low susceptibility index (<=4.0) and high PI in NHSN to glume discoloration, *Kharif* 2023

			L	ocation/ of scor	Freque res (0-9)	ncy		al	*	3)**	*	<u>(</u>)**
P. No.	Br. No.	IET No.	CHT	LNV	NVS	NWG	SI	Tot	~=>	PI (<	~ 	;->) Id
77	3010	31478	3	3	3	3	3.0	4	4	100	4	100
6	2806	31436	5	3	3	3	3.5	4	3	75	4	100
45	2918	31458	3	3	3	5	3.5	4	3	75	4	100
63	2927	31466	3	3	5	3	3.5	4	3	75	4	100
65	2929	31468	5	3	1	5	3.5	4	2	50	4	100
92	3025	31490	-	3	3	5	3.7	3	2	67	3	100
7	2807	31437	3	3	5	5	4.0	4	2	50	4	100
10	2810	31439	5	3	3	5	4.0	4	2	50	4	100
17	2817	31445	5	3	3	5	4.0	4	2	50	4	100
19	2901	31446	5	3	3	5	4.0	4	2	50	4	100
21	2903	31448	5	3	3	5	4.0	4	2	50	4	100
25	2907	30556	3	3	5	5	4.0	4	2	50	4	100
47	2920	31460	5	3	5	3	4.0	4	2	50	4	100
69	3002	31472	3	3	5	5	4.0	4	2	50	4	100
74	3007	31476	5	3	3	5	4.0	4	2	50	4	100
78	3011	31479	3	3	5	5	4.0	4	2	50	4	100

			L	ocation/ of scoi	Freque res (0-9)	ncy		al	*	3)**	*(<u>(</u>)**
P. No.	Br. No.	IET No.	CHT	LNV	NVS	NWG	SI	Tot	~=~ ~	PI (<-	~ ~	;->) Id
80	3013	31481	3	3	5	5	4.0	4	2	50	4	100
106	3112	31500	5	3	5	3	4.0	4	2	50	4	100
28	TN 1		7	5	5	7	6.0	4	0	0	2	50
	LSI		4.8	3.3	4.7	5.5						

(SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored ≤ 3 and ≤ 5)

> DSN

Donor screening nursery (DSN) comprising of 212 entries including checks were tested against glume discolouration at 4 locations *viz.*, Chatha, Lonavala, Navasari and Nawagam. The frequency distribution of disease scores and LSI are presented below. The disease pressure was moderate at Nawagam (LSI 5.2) and Chatha (LSI 5.2), Navasari (LSI 4.8), and Lonavala (LSI 3.0)

Location severity index(LSI) and frequency distribution of glume discoloration scores of DSN, *Kharif* 2023

Saama	Location/Frequency of scores (0-9)										
Score	CHT	LNV	NVS	NWG							
1	0	2	0	0							
3	21	203	61	41							
5	77	4	110	112							
7	36	0	37	51							
9	0	0	2	4							
Total	134	209	210	208							
LSI	5.2	3.0	4.8	5.2							
Screening method	Ν	Ν	Ν	Ν							

(N- Natural; LSI- Location Severity Index)

Some of the entries that are found to be promising are IET 19345, VP-R47-SHB, VP-R262-SHB AP MS-14B, 733, 19451, RBN-3, RBN-6, VP-R27-SHB VP-R278-SHB, VP-R294-SHB, WGL 1380, WGL 1840, WGL 1857, WGL 1870, WGL 1929 and 4857.

Promising donors with low susceptibility index (<=3.5) and high PI in DSN to glume discoloration, *Kharif* 2023

		Location/Frequency of scores (0-9)					_		**(**(
P. No.	Br. No.	CHT	LNV	NVS	DWN	SI	Tota	<=3*	PI (<-3)	*S=>	PI (<-5)
49	19345	-	3	3	3	3.0	3	3	100	3	100
62	VP-R47-SHB	-	3	3	3	3.0	3	3	100	3	100

		Loca O	ation/l f scor	Frequ es (0-	ency 9)		_	.14	**(.16	**(
P. No.	Br. No.	No. CHT CHT SI SI SI SI SI SI SI SI SI SI SI SI SI	Tota	<=3*	PI (<-3	*S=>	PI (<-5				
75	VP-R262-SHB	-	3	3	3	3.0	3	3	100	3	100
133	AP MS-14B	-	3	3	3	3.0	3	3	100	3	100
211	733	-	3	3	3	3.0	3	3	100	3	100
42	19451	-	1	5	3	3.0	3	2	67	3	100
26	RBN-3	3	3	3	5	3.5	4	3	75	4	100
29	RBN-6	3	3	5	3	3.5	4	3	75	4	100
58	VP-R27-SHB	3	3	3	5	3.5	4	3	75	4	100
76	VP-R278-SHB	5	3	3	3	3.5	4	3	75	4	100
78	VP-R294-SHB	5	3	3	3	3.5	4	3	75	4	100
168	WGL 1380	3	3	3	5	3.5	4	3	75	4	100
172	WGL 1840	3	3	5	3	3.5	4	3	75	4	100
173	WGL 1857	5	3	3	3	3.5	4	3	75	4	100
177	WGL 1870	3	3	3	5	3.5	4	3	75	4	100
181	WGL 1929	3	3	5	3	3.5	4	3	75	4	100
204	4857	5	3	3	3	3.5	4	3	75	4	100
188	TN1	7	3	5	5	5.0	4	1	25	3	75
	LSI	5.2	3.0	4.8	5.2						

SI- Susceptibility Index; Promising Index (PI) based on percentage of locations the entry has scored ≤ 3 and ≤ 5)

> MULTIPLE DISEASE RESISTANCE

In NSN-1, a total of 25 entries had shown resistant/moderately resistant reaction to two or three diseases. All the entries showed moderate or resistant reaction against any of two diseases except IET# 30830 (MR to NB, SHB, BS, BB and SHR), 29820 (R to NB, MR to SHR,RTD and GD), 29549 (MR to SHB,BS and SHR), 29891 (MR to NB, SHB and BB), 30078 (MR to SHB,BB and SHR), 30233 (MR to LB, BS and SHR) and 30877 (MR to SHB, BB and SHR) which showed moderate reaction for three or more diseases. Other entries under NSN-1 which showed different reaction was listed below. Entries viz., IET # 28965 (MR to LB & R to NB), 29694 (MR to LB&BS), 29696 (MR to LB&NB), 29708 (MR to RTD&GD), 30235 (MR to LB&SHB), 30240 (MR to SHB&BB), 30573 (MR to LB&GD), 30605 (MR to LB&SHB), 30827 (SHB&BB), 30835 (MR to BB&SHR), 30917 (MR to LB&RTD), 30918 (MR to NB&GD), 30942 (MR to LB&RTD) and 31120 (MR to NB&BB).

SI No	IFT No	No. Disease susceptible/resistance reaction							
51. 190.	IEI NU.	LB	NB	ShB	BS	BB	ShR	RTD	GD
1	28965	4.00	3.00	-	-	-	-	-	-
2	29549	-	-	4.67	4.53	-	3.25	-	-
3	29694	3.70	-	-	4.71	-	-	-	-
4	29696	3.91	3.17	-	-	-	-	-	
5	29708	-	-	-	-	-	-	4.00	3.50
6	29820	-	2.83	-	-	-	4.13	4.00	3.50
7	29891	-	3.17	5.10	-	4.42	-	-	-
8	30078	-	-	4.55	-	4.50	3.63	-	-
9	30233	4.00	-	-	4.71		3.88		
10	30235	4.04	-	5.24	-	-	-	-	-
11	30240	-	-	5.15	-	4.50	-	-	-
12	30573	3.64	-	-	-	-	-	-	3.50
13	30605	-	-	-	-	4.00	3.25	-	-
14	30657	-	-	-	4.76	-	-	4.00	-
15	30757	-	3.17	-	-	-	4.13	-	-
16	30772	-	3.00	-	-	4.22	-	-	-
17	30827	-	-	4.70	-	3.71	-	-	-
18	30830	-	3.17	5.05	4.76	4.00	4.13	-	-
19	30835	-	-	-	-	3.91	4.00	-	-
20	30877	-	-	5.23	-	4.44	4.14	-	-
21	30917	4.04	-	-	-	-	-	4.00	-
22	30918	-	3.00	-	-	-	-	-	3.50
23	30942	4.00	-	-	-	-	-	4.00	
24	31120	-	3.00	-	-	4.54	-	-	-
25	29142(R)	3.78		-	4.81	-	-	-	-

Multiple disease resistant lines in NSN-1, *Kharif* -2023

In NSN-2, a total of eighteen entries showed resistance or moderate resistance reaction to two or three diseases. The entry *viz.*, IET # 31710 showed resistance reaction to NB, MR to BS, SHR and 31719 resistant to NB, SHR &GD showed resistance to three diseases. Remaining entries showed resistance or MR to two diseases and that included IET# 31075 (MR to LB&BS), 31525 (MR to LB&NB), 31553 (MR to SHB&SHR), 31586 (MR to BB&SHR), 31616 (R to NB& MR to SHR), 31621 (MR to LB&BB), 31658 (MR to BB&SHR), 31681 (R to NB& MR to SHB), 31683 (R to NB& MR to SHR), 31725 (MR to SHR&GD), 31820 (R to NB& MR to SHR), 31821 (R to NB&GD), 31827 (MR to NB&SHR), 31836 (MR to NB&SHR), 31895 (MR to NB&SHR) and 31906 (MR to SHB&SHR).

SL N-		Disease susceptible/resistance reaction								
51. INO.	IEI NO.	LB	NB	ShB	BS	BB	ShR	RTD	GD	
1	31075	4.00	-	-	4.82	-	-	-	-	
2	31525	3.86	3.25	-	-	-	-	-	-	
3	31553	-	-	4.76	-	-	4.00	-	-	
4	31586	-	-	-	-	4.75	3.25	-	-	
5	31616	-	3.00	-	-	-	4.00	-	-	
6	31621	4.00	-	-	-	4.50	-	-	-	
7	31658	-	-	-	-	4.75	4.00	-	-	
8	31681	-	2.50	4.71	-	-	-	-	-	
9	31683	-	2.75	-	-	-	3.75	-	-	
10	31710	-	2.75	-	3.93	-	4.00	-	-	
11	31719	-	3.25	-	-	-	3.75	-	3.00	
12	31725	-	-	-	-	-	4.00	-	3.00	
13	31820	-	2.75	-	-	-	3.25	-		
14	31821	-	3.00	-	-	-		-	3.00	
15	31827	-	3.25	-	-	-	4.00	-	-	
16	31836	-	3.00	4.76	-	-		-	-	
17	31895	-	3.50		-	-	3.75	-	-	
18	31906	-		4.65	-	-	4.00	-	-	

Multiple disease resistance in NSN-2, *Kharif* – 2023

In NSN-H, a total of ninteen entries showed moderate or resistant reaction to two or more than two diseases. Entry *viz.*, IET# 31420 (Resistant to LB,NB&SHR & MR to SHB) showed resistant or moderate resistant reaction to four diseases and 31383 (MR to SHB,BS&SHR), 31391 (MR to NB,SHB&SHR), 31402 (R to SHR&MR to NB,SHB), 31405 (MR to LB,BS&SHR) and 31422(R to SHR& MR to LB,NB) were showed resistant or moderate resistant reaction to three diseases. Remaining all entries viz., IET# 29654 (MR to BS&SHR), 30513 (MR to SHB&BS), 31387 (MR to SHB&BS), 31388 (MR to LB&BS), 31389 (MR to LB&BS), 31400 (MR to NB&SHR), 31409 (MR to LB&SHR), 31411 (SHB&BS), 31415 (MR to NB&SHB), 31416 (R to NB&SHR), 31421 (R to SHR&MR to SHB), 31426 (MR to SHB&SHR) and 31429 (MR to LB&SHR).

Sl. No.	IFT N-	Disease susceptible/resistance reaction								
	IEI NO.	LB	NB	ShB	BS	BB	ShR	RTD	GD	
1	29654	-	-	-	4.40	-	3.00	-	-	
2	30513	-	-	5.00	4.20	-	-	-	-	
3	31383	-	-	4.33	4.60	-	3.00	-	-	
4	31387	-	-	5.00	4.20	-	-	-	-	
5	31388	4.10			4.40	-		-	-	
6	31389	3.80	-	-	4.40	-	-	-	-	
7	31391	-	3.50	5.00	-	-	3.00	-	-	
8	31400	-	3.50		-	-	3.00	-	-	
9	31402	-	3.50	5.00	-	-	2.00	-	-	
10	31405	4.00	-	-	4.60	-	3.00	-	-	
11	31409	3.80	-	-	-	-	3.00	-	-	
12	31411	-	-	5.00	4.60	-	-	-	-	
13	31415	-	3.67	4.33	-	-	-	-	-	
14	31416	-	3.00	-	-	-	3.00	-	-	
15	31420	3.00	3.00	4.33	-	-	2.00	-	-	
16	31421	-	-	5.00	-	-	2.00	-	-	
17	31422	3.60	3.50	-	-	-	2.00	-	-	
18	31426	-	-	5.00	-	-	3.00	-	-	
19	31429	4.10	-		-	-	3.00	-	-	

Multiple disease resistance in NSN-H, *Kharif* – 2023

In NHSN, a total of 27 entries found resistant or moderately resistant to two or more diseases. IET # 31436 (MR to SHB, BB SHR &GD), 31460 (MR to BS,BB,SHR&GD), 31466 (MR to NB,BS,SHR&GD), 31473 (MR to LB,NB,BS&GD), 31489 (MR to NB,SHB,BS&BB), 31469 (MR to LB,NB&SHR), 31490 (MR to NB,BS&GD) 31495 (MR to BS,BB&SHR) and 31496 (MR to NB,SHB&RTD) showed resistance to more than two diseases. Other entries for two diseases included IET# 30556 (MR to SHB&GD), 31435 (MR to LB&RTD), 31437 (MR to LB&GD), 31442 (MR to LB&BS), 31448 (MR to BS&GD), 31449 (MR to BS&BB), 31452 (MR to NB&RTD), 31459 (MR to LB&BB), 31464 (MR to NB&BS), 31465 (MR to SHB&BS), 31467 (MR to SHB&GD), 31471 (MR to BB&SHR), 31472 (MR to SHR&GD), 31474 (MR to LB&BS), 31476 (MR to RTD&GD), 31478 (MR to SHR&GD) and 31498 (MR to BS&GD).

SI No	IET No	Disease susceptible/resistance reaction								
51. INU.	IEI NO.	LB	NB	ShB	BS	BB	ShR	RTD	GD	
1	30556	-	-	5.37	-	-	-	-	4.00	
2	31435	3.53	-	-	-	-	-	5.00		
3	31436		-	5.26	-	5.5	5.00	-	3.50	
4	31437	4.16	-	-	-	-	-	-	4.00	
5	31442	4.11	-	-	4.92	-	-	-	-	
6	31448	-	-	-	5.18	-	-	-	4.00	
7	31449	-	-	-	5.17	5.4	-	-	-	
8	31452	-	4.40	-	-	-	-	5.00	-	
9	31459	4.16	-	-	-	5.5	-	-	-	
10	31460	-	-	-	5.17	5.1	5.00	-	4.00	
11	31464	-	4.50	-	4.83	-	-	-	-	
12	31465	-	-	5.26	5.17	-	-	-	-	
13	31466	-	4.40	-	5.00	-	4.86	-	3.50	
14	31467	-	-	5.35	-	-	-	-	4.00	
15	31469	3.81	4.25	-	-	-	4.71	-	-	
16	31471	-	-	-	-	4.9	5.00	-	-	
17	31472	-	-	-	-	-	5.00	-	4.00	
18	31473	4.00	4.40	-	4.91	-	-	-	4.00	
19	31474	4.17	-	-	4.75	-	-	-	-	
20	31476	-	-	-	-	-	-	5.00	4.00	
21	31478						5.00	-	3.00	
22	31480	3.78	-	-	4.92	4.5	-	-	-	
23	31489	-	3.50	5.15	5.08	5.5	-	-	-	
24	31490	-	3.25	-	5.17	-	-	-	3.7	
25	31495	-	-	-	5.00	5.2	4.00	-	-	
26	31496	-	4.50	5.42	-	-	-	5.00	-	
27	31498	-	-	-	5.08	-	-	-	4.0	

Multiple disease resistance in NHSN, *Kharif* – 2023

In DSN, a total of 32 donors were found resistant or moderate reaction to two or more diseases. Eleven donors exhibited resistant or moderate reaction to three and more diseases and that includes 19435 (MR to SHB, BB&GD), CK 145-3 (SHB,BB&SHR), CR 1014 (MR to NB,SHB&SHR), NLRBL-5 (MR to NB,SHB,BS&SHR), NLRBL-7 (MR to SHB,BS,BB&SHR), NLRBL-8 (MR to NB,SHB, BB&SHR), RP-Bio-Patho-3 (MR to BS,BB&SHR), VP-D6-SHB (MR to NB,BB&SHR), VP-R262-SHB (NB,SHBB&GD), VP-R297-SHB (MR to SHB,BB&SHR) and VP-R36-SHB (MR to SHB,BB&SHR).Other donors showing resistant or moderate reaction to two diseases was listed below.

SI No		Disease susceptible/resistance reaction								
SI. INO.	IEI NO.	LB	NB	ShB	BS	BB	ShR	RTD	GD	
1	4857	-	3.00	-	-	-	-	-	3.50	
2	19345	-	-	4.68	-	4.89	-	-	3.00	
3	19451	-	3.25	-	-	-	-	-	3.00	
4	CB 18586	4.00	-	-	-	-	4.33	-	-	
5	CB 20117	-	-	5.21	-	-	4.00	-	-	
6	CB 20166	-	2.50	-	-	-	4.33	-	-	
7	CK 145-3	-	-	5.10	-	5.00	4.33	-	-	
8	CO 51	4.11	-	-	-	-	7.00	-	-	
9	CR1014	-	3.25	5.00	-	-	4.33	-	-	
10	KNM15361	4.05	-	-	4.85	-	-	-	-	
11	NLR 3186	-	-	4.75	-	-	4.17	-	-	
12	NLRBL-2	-	-	-	4.54	4.95	-	-	-	
13	NLRBL-3	-	-	-	4.77	4.95	-	-	-	
14	NLRBL-4	-	-	5.21	-	5.00	-	-	-	
15	NLRBL-5	-	3.25	5.00	4.62	-	4.17	-	-	
16	NLRBL-6	-	-	-	4.92	-	4.17	-	-	
17	NLRBL-7	-	-	4.75	4.54	4.68	3.17	-	-	
18	NLRBL-8	-	2.75	5.10	-	4.95	3.50	-	-	
19	RBN-6	3.95	-	-	-	-	-	-	3.50	
20	RP-Bio-Patho-3	-	-	-	4.85	4.42	4.33	-	-	
21	RP-Bio-Patho-4	-	-	-	4.77	4.37	-	-	-	
22	RTCNP-97	-	-	5.22	-	4.86	-	-	-	
23	VP-D6-SHB	-	2.25	-	-	4.79	4.33	-	-	
24	VP-R107-SHB	-	3.00	-	-	-	4.33	-	-	
25	VP-R109-SHB	-	3.00	4.68	-	-	-	-	-	
26	VP-R262-SHB	-	2.25	4.74	-	4.58	-	-	3.00	
27	VP-R27-SHB	-	-	-	-	-	4.33	-	3.50	
28	VP-R289-SHB	-	-	-	-	4.89	-	4.00	-	
29	VP-R294-SHB	-	-	-	-	4.47	-	-	3.50	
30	VP-R297-SHB	-	-	4.84	-	3.95	4.33	-	-	
31	VP-R36-SHB	-	-	4.47	-	4.84	4.33	-	-	
32	VP-R45-SHB	-	2.75	-	-	4.74	-	-	-	

Multiple	disease	resistance	in	DSN.	Khari	f - 2023
-----------------	---------	------------	----	------	-------	----------
II.: FIELD MONITORING OF VIRULENCE

TRIAL No.8: Leaf Blast - Pyricularia oryzae

The experiment was conducted at 24 locations across India against *Pyricularia oryzae* during *Kharif* 2023. The aim of this experiment was to monitor virulence pattern in the population of rice blast pathogen. The nursery included 39 cultivars consisting of near isogenic lines, international differentials, donors and commercial cultivars possessing different gene/gene combinations for blast resistance. Susceptible checks like HR 12 and CO-39 and resistant check like Tetep, Rasi, IR 64 were included in the trial. The reaction of 39 differentials at twenty-four locations during the crop season to monitor the blast reaction is presented in Table 8.1. The disease pressure was very high at Lonavala (LSI 7.3), while it was high at Cuttack (LSI 6.4). At Gudalur, Hazaribagh, Jagtial, Almora, Coimbatore, Gangavathi, Navasari, Khudwani, and Nawagam, the LSI was recorded in between 5.0 to 6.0. The disease pressure was recorded as less than 5.0 at Patna, Jagdalpur, Pattambi, Uppershillong, Imphal, Mandya, Nellore, Ponnampet, Mugad, IIRR, Wangbal, Maruteru and Karjat. The data from these locations are presented in Table 8.1 and Figure 8.1A.

Differentials *viz.*, Tetep, RP Bio Path-3, RP Bio Path-2, Raminad str-3, and zenith were showed resistant to moderate resistant reaction across the locations with SI of <4.0. Tetep was highly resistant across 14 locations indicating its potentiality as the best donor against leaf blast disease. However, Tetep was susceptible at Cuttack (score 7.0) and moderately resistant (Score 3.0-5.0) at Coimbatore, Gudalur, Imphal, Jagtial, Patna, Pattambi, Uppershillong, Nellore and Almora. Differential line-RP Bio Patho 3 possessing *Pi2*, showed resistance reaction at 11 locations and susceptible reaction at four locations. RP Bio Path 2 possessing *Pi54* showed resistant reaction across 9 locations, moderately resistant at 26 locations while it was susceptible in 4 locations. Raminad str-3 was found highly susceptible at Lonavala, Cuttack, Gangavathi and Jagtial; resistant at nine locations. Zenith, possessing a combination of three genes (*Pi-z* + *Pi-a* + *Pi-i*) showed resistant reaction at 7 locations; moderately resistant at most of the locations and highly susceptible at Lonavala.

The susceptible checks like HR-12 and Co-39 showed susceptible reaction at most of the locations. HR-12 recorded resistant reaction at Karjat, Mugad and Wangbal; moderate at Imphal, Ponnampet, while CO-39 found resistant at Imphal, Karjat, and Maruteru; it was moderately resistant at Ponnampet and Wangbal. The resistant check Rasi was highly susceptible at Almora, Cuttack, Hazaribagh, Jagdalpur, Lonavala, Mandya and Navasari. IR 64 found highly susceptible at Cuttack, Gudalur, Lonavala and Patna.

The difference in disease reaction score of susceptible and resistant checks reveals that a minor shift in the pathogen population. Cluster analysis of *Pyricularia oryzae* reaction on 39 different genotypes at 24 locations was done and is presented in Figure 8.1B. The reaction pattern of genotypes at all the locations was grouped into eight major groups at 30% dissimilarity coefficient. The reaction pattern of *Pyricularia oryzae* isolate from Lonavala and Cuttack were distinct from the rest of the isolates. The isolate from Coimbatore and Gudalur are grouped in same cluster. Similarly, the isolates from Navsari and Almora; Hazaribagh and Jagtial grouped together. The other 16 isolates formed a major cluster showing same kind of reaction pattern (Fig 8.1B).

Plant Pathology
Ń
Vol.
2023,
Report
- Annual Progress
- AICRPR
ICAR-IIRR

					_																																			_		_	_
	сIJ	96	83	83	6L	92	83	70	6L	74	71	67	62	83	83	75	75	75	67	79	71	67	79	61	63	67	79	67	57	75	75	67	57	48	63	54	50	42	29	33			
¢ IQ	C17	58	46	38	38	33	38	50	42	26	38	42	33	25	29	33	29	29	33	25	33	33	21	28	38	21	17	17	35	17	25	17	22	22	21	25	21	17	13	13			
E	10121	24	24	24	24	24	24	20	24	19	24	24	21	24	24	24	24	24	24	24	24	24	24	18	24	24	24	24	23	24	24	24	23	23	24	24	24	24	24	24			
1 1	C=>	23	20	20	19	22	20	14	19	14	17	16	13	20	20	18	18	18	16	19	17	16	19	11	15	16	19	16	13	18	18	16	13	11	15	13	12	10	7	8			
÷.	C =∕	14	11	6	6	×	6	10	10	S	6	10	7	6	7	8	7	7	8	6	8	×	5	S	6	S	4	4	8	4	6	4	5	5	5	9	S	4	e	3			
5	21	3.0	3.9	3.9	3.9	3.9	4.0	4.0	4.0	4.1	4.1	4.2	4.2	4.3	4.3	4.4	4.4	4.4	4.4	4.5	4.5	4.5	4.5	4.5	4.6	4.6	4.6	4.7	4.7	4.8	4.8	4.8	4.9	5.0	5.0	5.0	5.6	5.7	6.4	6.4			
КJТ	A	1.0	3.0	3.0	1.0	1.0	1.5	1.5	1.0	1.0	1.0	2.0	1.5	5.0	2.0	2.0	1.0	1.5	0.5	4.5	3.0	3.0	2.0	1.5	3.0	1.5	1.0	2.0	0.5	2.0	1.0	1.0	1.5	3.5	4.5	1.5	1.0	6.5	1.0	3.0	0.5	6.5	2.0
KHD	Z	0.0	3.0	4.0	6.0	3.0	6.0	6.0	5.0	8.0	2.0	3.0	5.0	4.0	6.0	4.0	7.0	4.0	6.0	4.0	5.0	4.0	5.0	7.0	4.0	5.0	7.0	5.0	5.0	6.0	7.0	4.0	4.0	6.0	7.0	4.0	5.0	6.0	7.0	7.0	0.0	8.0	5.0
JGL	V	4.0	4.0	5.0	7.0	5.0	5.0	,	9.0	,	5.0	7.0		5.0	4.0	3.0	5.0	7.0	5.0	7.0	5.0	6.0	5.0	,	9.0	5.0	5.0	5.0	•	5.0	9.0	5.0	5.0	1	7.0	4.0	6.0	7.0	7.0	5.0	3.0	9.0	5.7
JDP	Z	2.5	3.5	4.0	3.0	1.5	2.5	2.5	2.5	6.5	3.5	3.5	7.5	3.5	3.0	7.0	3.5	4.5	0.9	5.0	3.5	4.5	4.0	7.0	4.5	7.0	3.5	3.5	3.0	6.5	3.5	3.5	3.5	6.5	7.0	8.0	0.6	8.5	8.5	8.5	1.5	0.6	4.8
IMP	Z	5.0	5.0	6.0	4.5	3.5	5.0	5.0	4.0	4.5	4.5	5.0	6.0	4.0	4.0	4.0	3.5	6.0	4.0	3.0	3.0	3.0	3.0	4.0	4.0	5.0	5.0	4.0	5.0	4.0	4.5	6.0	5.0	3.0	3.0	4.5	3.0	3.5	3.5	3.0	3.0	6.0	4.2
IIRR	A	1.0	2.0	2.0	2.0	3.0	3.0	1.0	1.0	3.0	3.0	2.0	3.0	3.0	3.0	3.0	2.0	3.0	2.0	3.0	2.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	3.0	3.0	2.0	3.0	3.0	2.0	2.0	3.0	5.0	3.0	7.0	7.0	1.0	7.0	2.8
HZB	N	3.0	5.0	4.0	4.0	4.0	4.0	7.0	3.0	·	3.0	4.0	8.0	4.0	6.0	7.0	4.0	6.0	6.0	8.0	6.0	6.0	4.0		6.0	5.0	5.0	4.0	8.0	7.0	7.0	4.0	5.0	8.0	5.0	7.0	8.0	9.0	8.0	9.0	3.0	9.0	5.7
GNV	N	2.0	3.5	4.5	7.5	4.5	6.5	4.5	7.0	6.5	4.0	6.5	5.0	4.0	4.0	4.0	4.5	5.0	3.5	4.0	6.5	6.5	4.0	4.5	7.0	5.0	4.5	4.0	6.0	4.0	7.5	7.0	7.5	4.0	5.0	6.0	9.0	5.0	9.0	7.5	2.0	9.0	5.4
GDL	N	4.0	6.0	4.0	4.0	5.0	5.0		7.0	ı	7.0	7.0	ı	6.0	5.0	4.0	7.0	5.0	5.0	4.0	5.0	7.0	6.0		6.0	6.0	5.0	6.0	6.0	5.0	4.0	6.0	6.0	6.0	6.0	6.0	7.0	7.0	8.0	8.0	4.0	8.0	5.7
CTK	Υ	7.0	7.0	5.0	7.0	5.0	5.0	5.0	5.0	5.0	7.0	7.0	7.0	5.0	5.0	7.0	5.0	5.0	7.0	7.0	9.0	7.0	7.0	7.0	7.0	7.0	5.0	7.0	5.0	5.0	7.0	7.0	7.0	7.0	7.0	7.0	5.0	5.0	9.0	9.0	5.0	9.0	6.4
CBT	V	4.0	6.0	4.0	4.0	3.0	4.0	·	6.0	ı	6.0	6.0	ı	6.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	7.0	6.0	-	6.0	0.9	5.0	0.0	6.0	5.0	5.0	5.0	6.0	6.0	6.0	5.0	5.0	6.0	7.0	8.0	3.0	8.0	5.4
ALM	N	3.5	4.5	6.0	4.5	4.5	4.0	4.5	4.0	5.5	6.0	3.5	6.0	5.0	6.0	5.5	6.0	5.5	6.0	4.0	5.5	5.0	5.0	7.0	5.5	5.5	5.0	5.0	6.5	7.0	4.5	5.5	5.5	5.5	7.5	8.5	8.5	7.5	6.0	6.5	3.5	8.5	5.6
Locations	Genes/Screening	Pi-kh+	Pi2	Pi54		Pi- z + Pi - a + Pi - i	,	Pi-ka +	Pi-ta	Pi-ks	Resistant	(Pi9+Pi54)	Pi-12	Pi54	Pi54	Pi2	Pil	Pig	Pi-I + Pi-2	Pi-2	Pi2	Pi54	Pi2	Pi-a+	Pig	P_{i-7}	Pi-3	Pil	P_{i-9}	Pi54	Pi-k	Pi-I + Pi-2 + Pi-4	Pi-2 + Pi-4	Pi-I	Pi-4b	Resistant	Pi-ks		Susceptible	Susceptible	Min Score	Max score	
D. 66.	DILLE FERUALS	Tetep	RP Biopatho-3	RP Biopatho-2	Raminad-STR-3	Zenith	NP - 125	Dular	Tadukan	Calaro	IR - 64	RP 6619(PRS-17)	RIL - 10	RP Biopatho-4	RP Patho-3	RP Biopatho-1	RP Patho-7	RP 6617-58(PRS-58)	BL-122	C101 A51	RP Patho-8	RP 6618(PRS-50)	RP Patho-2	USEN	RP 6617-59(PRS-59)	RIL - 29	C101 PKT	RP Patho-1	O. minuta	RP Patho-9	Kanto - 51	A 57	BL-245	C101 LAC	C101 TTP	Rasi	Shi-tia-tao	C104 PKT	HR - 12	Co - 39			ISI
	F.N0	22	34	33	12	13	14	16	20	19	21	36	5	35	28	32	29	38	8	2	30	37	27	15	39	9	11	26	2	31	17	10	6	1	4	24	18	3	23	25			

Table 8.1: Reaction of rice differentials to *Pyricularia oryzae* at across the locations in Idia during *Kharif* -2023

3.87

,	\ \	Locations	NV	MGD	MND	ITTM	NIN	SAN	NWC	dNd	BTR	NLd	USC	WRL	-	· –			
P.No	Differentials	Genes/Screening	Z	z	z	Z	V	z	V	z	z	z	Z	Z	v Z	=?*	5*] lot	E L	P15
22	Tetep	Pi-kh+	3.0	1.0	2.5	2.0	3.5	3.0	3.0	2.5	4.0	5.0	4.0	2.0	3.0	14 2	3 24	58	96
34	RP Biopatho-3	Pi2	6.5	3.0	1.5	2.0	2.5	4.5	5.0	4.5	3.0	2.0	3.0	3.0	3.9	11 2	0 24	46	83
33	RP Biopatho-2	Pi54	7.5	3.0	2.5	1.0	3.0	6.5	4.0	3.5	3.0	2.0	2.0	4.0	3.9	9 2	0 24	38	83
12	Raminad-STR-3		8.5	1.0	1.5	1.0	5.0	3.5	4.0	3.5	3.0	2.0	4.0	2.0	3.9	9 1	9 24	38	79
13	Zenith	Pi-z + Pi-a + Pi-i	9.0	3.0	4.5	1.0	4.0	3.5	4.5	4.5	6.0	5.0	4.0	2.0	3.9	8 2	2 24	33	92
14	NP - 125		7.5	3.0	1.5	1.0	4.0	5.0	3.5	3.0	4.0	7.0	3.0	2.0	4.0	9 2	0 24	38	83
16	Dular	Pi-ka+	9.0	3.0	2.5	1.0	3.0	5.5	5.5	2.0	3.0	6.0	,	3.0	4.0	1 1	4 20	50	70
20	Tadukan	Pi-ta	7.0	3.0	1.5	2.5	4.0	3.5	3.5	3.0	3.5	5.0	3.0	3.0	4.0	1 1	9 24	42	79
19	Calaro	Pi-ks	0.0	3.0	4.0	-	3.5	4.0	6.5	3.5	4.0	5.0	4.0	0.0	4.1	5 1	4 19	26	74
21	IR - 64	Resistant	7.5	1.0	4.5	1.5	3.0	6.5	5.0	3.5	4.0	7.0	2.0	2.0	4.1	9 1	7 24	38	71
36	RP 6619(PRS-17)	(Pi9+Pi54)	7.0	3.0	2.5	2.0	2.0	5.5	4.0	3.0	3.5	7.0	3.0	2.0	4.2	1 1	6 24	42	67
5	RIL - 10	Pi-12	6.5	1.0	1.5	1.0	5.0	5.5	4.0	4.0	3.5	2.0	6.0	0.0	4.2	7 1	3 21	33	62
35	RP Biopatho-4	Pi54	8.0	5.0	1.5	1.5	2.5	5.5	5.0	4.5	3.5	5.0	3.0	3.0	4.3	6 2	0 24	25	83
28	RP Patho-3	Pi54	9.0	3.0	4.5	1.0	3.0	3.0	5.0	3.5	5.0	5.0	4.0	4.0	4.3	7 2	0 24	29	83
32	RP Biopatho-1	Pi2	7.0	3.0	6.5	2.5	4.0	5.0	5.0	2.0	5.0	4.0	3.0	2.0	4.4	8 1	8 24	33	75
29	RP Patho-7	Pil	9.0	5.0	2.5	1.5	3.0	7.0	3.5	2.0	3.5	5.0	6.0	3.0	4.4	7 1	8 24	29	75
38	RP 6617-58(PRS-58)	Pig	8.0	3.0	3.5	1.0	2.0	6.0	5.0	4.5	3.0	5.0	4.0	2.0	4.4	7 1	8 24	29	75
∞	BL-122	Pi-I+Pi-2	7.0	3.0	4.5	3.0	4.0	5.0	5.5	2.5	5.5	3.0	3.0	3.0	4.4	8 1	6 24	33	67
2	C101 A51	Pi-2	5.5	1.0	4.5	2.5	5.0	4.5	4.0	2.5	5.0	4.0	8.0	2.0	4.5	6 1	9 24	25	79
30	RP Patho-8	Pi2	9.0	3.0	3.5	1.5	3.0	6.0	4.5	3.5	3.0	6.0	5.0	2.0	4.5	8 1	7 24	33	71
37	RP 6618(PRS-50)	Pi54	7.0	3.0	4.5	1.5	2.0	4.5	4.5	5.5	3.0	3.0	4.0	4.0	4.5	8 1	6 24	33	67
27	RP Patho-2	Pi2	8.0	5.0	3.5	2.5	4.5	5.0	5.0	3.5	5.5	4.0	5.0	3.0	4.5	5 1	9 24	21	79
15	USEN	Pi-a+	0.0	3.0	4.0	ı	3.5	6.0	6.5	3.5	4.0	7.0	ı	3.0	4.5	5 1	1 18	28	61
39	RP 6617-59(PRS-59)	Pig	7.0	3.0	2.5	2.0	2.0	5.5	5.0	4.5	3.0	3.0	4.0	3.0	4.6	9 1	5 24	38	63
9	RIL - 29	Pi-7	6.0	1.0	2.5	4.0	3.5	6.0	4.5	5.5	5.0	5.0	5.0	2.0	4.6	5 1	6 24	21	67
11	C101 PKT	P_{i-3}	0.6	5.0	3.5	2.0	4.0	6.0	4.5	3.5	5.0	6.0	6.0	3.0	4.6	4 1	9 24	17	79
26	RP Patho-1	Pil	0.6	5.0	4.5	1.5	4.5	5.5	4.5	3.5	6.0	6.0	6.0	2.0	4.7	4 1	6 24	17	67
2	O. minuta	P_{i-9}	7.0	3.0	2.5	3.0	4.5	7.0	5.5	2.5	5.5	6.0	5.0	3.0	4.7	8 1	3 23	35	57
31	RP Patho-9	Pi54	9.0	5.0	4.5	3.0	4.0	4.5	5.5	4.5	5.0	5.0	5.0	0.0	4.8	4 1	8 24	17	75
17	Kanto - 51	Pi-k	9.0	3.0	4.5	3.0	4.0	5.0	5.0	4.5	3.0	5.0	3.0	4.0	4.8	6 1	8 24	25	75
10	A 57	Pi-I + Pi-2 + Pi-4	9.0	5.0	3.5	2.5	5.0	6.0	7.0	4.5	4.0	5.0	5.0	2.0	4.8	4 1	6 24	17	67
6	BL-245	Pi-2+Pi-4	8.0	5.0	6.5	3.0		4.5	5.5	5.5	6.0	5.0	3.0	2.0	4.9	5 1	3 23	22	57
1	C101 LAC	Pi-I	6.5	3.0	5.5	1.5	5.0	6.0	4.5	3.5	7.0	4.0	7.0	3.0	5.0	5 1	1 23	22	48
4	C101 TTP	Pi-4b	7.0	3.0	3.5	3.5	5.0	4.5	4.5	2.5	6.0	5.0	5.0	3.0	5.0	5 1	5 24	21	63
24	Rasi	Resistant	8.0	1.0	7.5	1.5	4.0	7.5	6.0	3.5	4.5	6.0	3.0	3.0	5.0	6 1	3 24	25	54
18	Shi-tia-tao	Pi-ks	9.0	5.0	9.0	2.5	3.0	6.5	5.0	5.5	3.5	6.0	6.0	2.0	5.6	5 1	2 24	21	50
3	C104 PKT	1	7.0	3.0	8.0	3.0	4.0	6.0	5.5	2.5	8.0	5.0	6.0	4.0	5.7	4 1	0 24	17	42
23	HR - 12	Susceptible	8.0	3.0	9.0	5.0	6.5	7.0	8.0	4.0	7.5	5.0	7.0	2.0	6.4	3	7 24	13	29
25	Co - 39	Susceptible	9.0	5.0	8.0	3.0	6.0	7.0	7.0	4.5	7.0	7.0	5.0	4.0	6.4	3 8	8 24	13	33
		Min Score	0.0	1.0	1.5	1.0	2.0	3.0	3.0	2.0	3.0	2.0	2.0	0.0					
		Max score	9.0	5.0	0.0	5.0	6.5	7.5	8.0	5.5	8.0	7.0	8.0	4.0					
	TSI		7.3	3.2	4.1	2.1	3.8	5.3	5.0	3.7	4.5	4.9	4.4	2.5					

(Contd.) Table 8.1: Reaction of rice differentials to *Pyricularia oryzae* at across the locations in India during *Kharif*-2023

3.88

Figure 8.1A: Differential reaction of hosts to rice blast pathogen (*Pyricularia oryzae*) at different locations - *Kharif* 2023

Figure 8.1B: Dendrogram showing relatedness of different reactions of *P. oryzae* at different locations during *Kharif*-2023

TRIAL No.9: Bacterial Blight (BB) - Xanthomonas oryzae pv. oryzae (Xoo)

Trial on monitoring virulence of bacterial blight (BB) pathogen, Xanthomonas oryzae pv. oryzae (Xoo) was proposed at 25 hot spot locations across India during Kharif season of 2023. However, data were received from 24 locations. At Ludhiana, the trial was conducted with five isolates. The rice differentials used in this trial consisted of eleven near isogenic lines (IRBB lines) possessing different single BB resistance genes in the genetic background of rice cultivar IR 24. The virulence analyses and categorization of the isolates was done based on the reaction of Xoo isolates on differentials possessing single BB resistance genes (Table 9.1). Reactions of the Xoo isolates were also recorded on differentials possessing combinations of different BB resistance genes. Susceptible checks like IR 24 and TN1 and resistant check like Improved Samba Mahsuri were included in the trial. Based on the reactions of the isolates on differentials possessing single BB resistance genes, the isolates from Cuttack, IIRR, Raipur, Maruteru and Chiplima were categorized as highly virulent as they produced LSI (Location Severity Index) greater than 7. All these isolates produced a highly susceptible reaction on susceptible check TN1. These isolates produced susceptible reactions on 11-13 differentials out of 13 differentials. These isolates produced moderate to highly susceptible reactions on IRBB21 possessing BB resistance gene Xa21. The isolates from Cuttack, Maruteru and Raipur produced highly susceptible reaction on IRBB 13 possessing BB resistance gene xa13. The isolate from Raipur and Maruteru also produced susceptible reaction (score 7) on resistant check Improved Samba Mahsuri possessing three BB resistance genes viz., Xa21, xa13 and xa5.

The isolates from Navsari, Pattambi, Nellore, Ludhiana (LXo # 1, 4, 7, 8 and 10), Patna, Gangavathi, Masodha, Nawagam, Chinsurah, Aduthurai, Coimbatore, Karjat, Pantnagar, Chatha, Jagadalpur, Rajendranagar and Titabar were categorized as moderately virulent and these isolates produced an LSI ranging from 5-7. These isolates produced susceptible reactions on 2-11 differentials. Majority of these isolates (except isolates from Masodha, Nawagam, Aduthurai and Ludhiana-Strain LDN Xo-8) showed moderate to high level of resistance to IRBB13. Similarly, most of these isolates (except isolates from Nellore, Ludhiana Strain 7 & 8, Aduthurai and Karjat) showed moderate to high level of resistance to IRBB21. The isolates from Moncompu was categorized as less virulent as they produced an LSI of below 3 and produced BB disease score of less than 3 on all differentials except TN1. The reactions of all these isolates to differentials possessing different combinations of BB resistance genes are presented in Table 9.2. The isolate from Maruteru showed highly susceptible reactions (BB score of 7-9) on all the differentials possessing various combinations of BB resistance genes including Improved Samba Mahsuri. In general, most of the gene combinations except IRBB 50, IRBB 51, IRBB 61 and IRBB 62 showed a broad spectrum resistance (Fig 9.1A). Cluster analysis of Xoo reaction on differentials possessing different single BB resistance genes at various locations was done and is presented in Fig 9.1B. The isolates from Maruteru and Raipur were quite different from other isolates and from each other and formed separate clusters. The isolates showing less virulence like isolates from Moncompu, Chatha, Titabar, Pantnagar, Rajendranagar and Jagadalpur grouped nearby. Most of the isolates from moderately virulent category grouped together.

Differentials		High	ly vir	ulent				Μ	oderat	ely vi	rulent	t		
IR-24	9	9	7	7	6	7	7	7	7	9	7	9	5	6
IRBB-1	9	9	7	7	8	7	7	7	7	9	7	9	7	8
IRBB-3	9	9	9	7	9	8	7	6	7	9	6	5	6	7
IRBB-4	5	9	7	7	7	8	7	7	7	5	7	4	7	5
IRBB-5	9	9	5	7	8	9	6	6	7	5	6	4	7	6
IRBB-7	9	9	7	7	8	7	7	6	7	7	5	6	7	7
IRBB-8	9	9	9	7	6	6	7	7	7	9	7	8	5	4
IRBB-10	9	9	7	7	8	7	7	6	7	9	8	6	6	5
IRBB-11	9	9	7	7	8	8	6	7	7	5	7	5	5	6
IRBB-13	9	3	7	7	6	5	6	5	3	3	5	6	7	7
IRBB-14	9	9	9	-	8	7	7	6	7	5	6	8	6	5
IRBB-21	-	5	7	7	5	6	6	7	7	3	5	5	4	3
ISM	5	3	7	7	3	3	5	7	3	3	5	3	3	5
TN1	9	9	9	9	9	8	9	9	9	9	9	8	9	9
LSI	8.38	7.86	7.43	7.15	7.07	6.86	6.71	6.64	6.57	6.43	6.43	6.14	6.00	5.93
Min Score	5	3	5	7	3	3	5	5	3	3	5	3	3	3
Max Score	9	9	9	9	9	9	9	9	9	9	9	9	9	9
# of entries>5	11	11	13	13	12	12	13	13	12	7	10	8	9	8

 Table 9.1: Reaction of rice differentials possessing different single BB resistance genes to

 Xanthomonas oryzae pv. oryzae at different locations during Kharif 2023

						Mode	erately	viruleı	nt					Less Vir
Diffe rentials	LX0-8	CHN	ADT	CBT	KJT	PNT	LX0-10	LX0-4	LX0-1	CHT	JGL	RNR	TTB	MNC
IR-24	7	5	7	6	5	9	7	7	7	6	7	5	6	0
IRBB-1	-	5	5	6	5	9	-	-	-	4	6	5	5	2
IRBB-3	5	5	7	3	5	5	5	5	7	5	7	5	5	1
IRBB-4	3	5	7	6	5	7	3	5	5	3	5	5	4	1
IRBB-5	3	5	3	6	5	5	7	5	3	5	8	6	3	2
IRBB-7	5	5	3	7	6	5	-	-	-	2	4	5	5	0
IRBB-8	7	9	1	6	6	5	7	5	3	6	6	5	5	1
IRBB-10	7	9	5	4	5	5	-	5	7	4	5	5	7	1
IRBB-11	7	7	3	7	5	3	7	7	7	7	5	5	5	2
IRBB-13	7	3	7	6	6	5	3	3	3	5	4	5	5	0
IRBB-14	7	7	3	5	6	3	7	7	7	7	2	5	6	2
IRBB-21	7	5	7	4	7	3	3	5	3	5	2	5	4	2
ISM	3	3	9	3	5	3	3	3	3	5	2	3	4	0
TN1	9	9	9	7	5	9	7	7	7	8	9	7	7	8
LSI	5.92	5.86	5.43	5.43	5.43	5.43	5.36	5.33	5.17	5.14	5.14	5.07	5.07	1.57
Min Score	3	3	1	3	5	3	3	3	3	2	2	3	3	0
Max Score	9	9	9	7	7	9	7	7	7	8	9	7	7	8
# of entries>5	8	5	7	9	5	4	6	4	6	5	6	2	4	1

(Contd.,) Table 9.1: Reaction of rice differentials possessing different single BB resistance genes to *Xanthomonas oryzae* pv. *oryzae* at different locations during *Kharif* 2023

	High Vir						Moder	ately vi	irulent					
Differentials	NTU	CTK	ADT	NWG	KJT	RPR	PTB	RNR	CHT	GNV	CBT	SBR	CHN	MSD
IRBB-50	7	9	5	5	7	5	6	5	4	3	6	7	5	5
IRBB-51	7	5	5	4	4	5	6	6	6	5	7	7	7	6
IRBB-52	7	5	7	6	4	5	6	5	5	4	4	5	3	5
IRBB-53	7	9	5	5	6	3	5	5	5	4	5	5	5	5
IRBB-54	7	5	7	5	4	5	5	6	3	5	4	5	5	5
IRBB-55	7	5	5	6	3	5	6	5	5	6	3	5	5	4
IRBB-56	7	3	7	5	5	5	5	5	7	4	4	5	5	5
IRBB-57	7	9	5	5	7	5	5	6	5	6	5	5	5	5
IRBB-58	5	1	7	7	5	5	5	5	3	5	3	3	5	5
IRBB-59	9	9	5	5	7	7	4	5	3	5	4	3	3	4
IRBB-60	9	9	3	5	7	5	4	5	3	7	6	3	5	3
IRBB-61	7	7	5	4	3	5	6	5	6	5	6	7	5	5
IRBB-62	7	9	3	6	5	5	5	5	5	3	6	5	7	5
IRBB-63	7	7	7	5	6	5	5	5	6	5	5	7	3	4
IRBB-64	7	3	5	6	7	3	4	5	4	7	3	5	3	4
IRBB-65	7	9	5	6	5	5	3	5	5	5	5	1	3	4
IRBB-66	7	9	3	3	6	5	3	3	5	3	5	1	3	3
ISM	7	5	9	5	5	7	5	3	5	3	3	3	3	3
TN1	9	9	9	9	5	9	9	7	8	8	7	9	9	9
LSI	7.2	6.7	5.6	5.4	5.3	5.2	5.1	5.1	4.9	4.9	4.8	4.8	4.7	4.7
Min S core	5	1	3	3	3	3	3	3	3	3	3	1	3	3
Max Score	9	9	9	9	7	9	9	7	8	8	7	9	9	9
# of entries>5	18	11	7	7	8	3	6	4	5	5	6	5	3	2

Table 9.2: Reaction of rice differentials possessing different combinations of BB resistance genes to Xanthomonas oryzae pv. oryzae at different locations during Kharif'2023

						M	oderatel	y virule	nt					Low Vir
Differentials	CHP	NLR	PTN	NVS	JGL	IIRR	LX0-7	LX0-4	TNT	TTB	LX0-1	LX010	LX0-8	MNC
IRBB-50	6	5	5	6	3	7	3	3	1	3	3	3	3	0
IRBB-51	4	5	4	5	4	3	3	3	5	3	-	-	3	0
IRBB-52	6	4	5	6	3	5	5	-	3	2	-	-	3	0
IRBB-53	7	5	6	3	3	3	5	3	2	3	3	3	3	0
IRBB-54	7	7	6	4	4	5	5	5	2	3	3	3	3	1
IRBB-55	4	6	3	2	4	1	3	5	3	3	3	3	7	1
IRBB-56	5	7	4	3	6	1	3	3	5	4	3	3	3	1
IRBB-57	6	5	5	4	2	3	3	3	3	4	3	3	3	3
IRBB-58	3	4	3	3	4	3	3	3	1	2	3	3	3	0
IRBB-59	3	4	3	4	4	1	3	3	1	2	3	3	5	0
IRBB-60	2	1	4	3	4	1	3	3	1	3	3	3	3	2
IRBB-61	5	3	3	6	3	9	3	3	5	5	-	-	1	0
IRBB-62	3	4	3	7	4	7	3	3	7	4	3	3	1	2
IRBB-63	4	3	4	5	5	1	3	3	1	4	3	3	3	2
IRBB-64	3	2	4	4	4	3	3	-	3	4	-	-	1	0
IRBB-65	3	2	3	2	3	1	3	3	5	3	3	3	1	1
IRBB-66	3	1	3	3	3	3	3	3	5	2	3	3	3	0
ISM	3	7	5	3	2	3	3	3	3	4	3	3	3	0
TN1	9	9	9	8	9	9	9	7	9	7	7	7	9	8
LSI	4.5	4.4	4.3	4.3	3.9	3.6	3.6	3.5	3.4	3.4	3.3	3.3	3.2	1.1
Min Score	2	1	3	2	2	1	3	3	1	2	3	3	1	0
Max S core	9	9	9	8	9	9	9	7	9	7	7	7	9	8
# of entries>5	6	5	3	5	2	4	1	1	2	1	1	1	2	1

(Contd.,) Table 9.2: Reaction of rice differentials possessing different combinations of BB resistance genes to *Xanthomonas oryzae* pv. *oryzae* at different locations during *Kharif* 2023

Figure 9.1A: Number of *Xoo* isolates showing moderate to high virulence on different BB resistance genes and their combinations during *Kharif* - 2023

Figure 9.1B: Dendrogram (based on reactions of differentials possessing single BB resistance genes) showing the relatedness of different *Xanthomonas oryzae* pv. *oryzae* isolates from various locations during *Kharif* - 2023

TRIAL No.10: III. DISEASE OBSERVATION NURSERY - Kharif-2023

Disease observation nursery (DON) trials were conducted at different locations with different sowing dates viz., early, normal and late with relevance to the respective locations, with an aim to estimate the effect of such varied sowing/planting dates on the occurrence and severity of the disease in the respective endemic regions. This trial was constituted to study the effect of different dates of sowings on the prevalence of different diseases in different rice growing systems like transplanted and directed seeded rice. It is generally known that the availability of susceptible host, virulent pathogen and prevalence of favorable weather conditions play important role in the process of disease development. In this context the trial was formulated with a susceptible variety (location specific) to take up sowing in three different dates to collect the information on the incidence of the disease and data was recorded as percent disease index of various rice diseases throughout the cropping period. Knowledge on the occurrence of particular disease in specific location based on susceptible host and time of sowing may help to formulate the best management strategy. Chinsurah and Moncompu centres were conducted both transplanted and direct seeded rice conditions. The trial was proposed at 11 locations i.e., Bankura, Chatha, Chinsurah, Kaul, Malan, Mandya, Maruteru, Moncompu, Nawagam, Pusa and Raipur. The data however was received from 8 centres for this trial. The salient features of this study are presented on location-wise below.

BANKURA

Three different sowing dates i.e., 01.07.2023 (early), 15.07.2023 (normal) and 02.08.2023 (late) were followed to study the effect of date of sowings on the progression of the leaf blast, brown spot and bacterial leaf blight diseases by using the susceptible varieties of this region *i.e.*, TN-1 and Danaguri. The variety Danaguri showed tolerance to blast (28.25% PDI) as compared to the variety TN-1 (36.61%) in this particular center (Table 10.1). The early sown crop showed more disease development and progression compared to the normal sown and late sown crops in the variety TN-1 (1.90 to 36.61% PDI). Leaf blast was more in early sown crop of variety TN 1 (1.90 to 36.61% PDI) followed by the normal sown crop of Danaguri (0.50-21.95% PDI). Lowest incidence of blast was observed in case of late sown crops of TN-1 (1.90-27.13% PDI. The Table 10.1 showed that in Bankura center, early sown crop is very much prone to leaf blast incidence.

In case of brown spot disease, the late sown crop showed more disease progression in both the varieties TN 1 and Danaguri (1.90-67.5% PDI and 1.70-64.85% PDI respectively) and least disease observed in the case of normal sown crop of both the varieties TN 1 and Danaguri (23.15% and 18.55% PDI respectively). similarly, the bacterial blight was more in early sown crop of both the both the varieties TN 1 and Danaguri (53.85% and 50.95% PDI respectively) and the least incidence of bacterial blight observed in normal sown crop.

Location/ Date	DAT			ŀ	Percentage	e of Disea	ase Sevei	ity		
of sowing	DAI		Blast		B	rown spo	ot		BLB	
V/DOS		(E)	(N)	(L)	(E)	(N)	(L)	(E)	(N)	(L)
TN 1	30 DAT	1.90	0.00	1.90	1.10	2.20	1.90	0.00	0.00	1.60
E: 01.07.23	40 DAT	4.35	3.20	12.55	23.45	13.35	13.55	1.90	0.60	9.95
N: 15.07.23	50 DAT	16.15	18.50	20.15	41.95	18.60	28.25	20.95	8.55	27.15
L: 02.08.23	60 DAT	36.61	29.15	27.13	57.80	23.15	56.95	53.85	24.00	53.55
	70 DAT	-	-	-	-	-	67.5	-	-	-
	80 DAT	-	-	-	-	-	-	-	-	-
	90 DAT	-	-	-	-	-	-	-	-	-
	100 DAT	-	-	-	-	-	-	-	-	-
	110 DAT	-	-	-	-	-	-	-	-	-
Danaguri	30 DAT	0.50	0.00	0.50	0.50	1.15	1.70	0.00	0.00	1.20
E: 01.07.23	40 DAT	2.70	0.50	7.10	19.85	10.80	10.90	3.40	1.00	9.15
N: 15.07.23	50 DAT	15.05	17.35	15.95	38.65	13.25	26.15	20.00	5.85	23.85
L: 02.08.23	60 DAT	23.00	28.25	21.95	51.10	18.55	53.60	50.95	21.85	49.20
	70 DAT	-	-	-	-	-	64.85	-	-	-
	80 DAT	-	-	-	-	-	-	-	-	-
	90 DAT	-	-	-	-	-	-	-	-	-
	100 DAT	-	-	-	-	-	-	-	-	-
	110 DAT	-	-	-	-	-	-	-	-	-

TABLE 10.1: Occurrence of different rice diseases in disease observation nursery at Bankura, Kharif - 2023

CHINSURAH

At Chinsurah, three different sowing dates viz., 01.07.23, 15.07.23 and 02.08.23 were followed as early, normal and late sowing periods respectively. The variety MTU 7029 was used to study the disease progress of different diseases in both transplanted and direct seeded rice conditions. The diseases that were prevalent in this centre were Sheath blight, Sheath rot, brown spot and bacterial leaf blight (BLB). The observations were taken at 10 days interval from 30 DAT to 110 DAT. Higher incidence of Sheath blight was observed in the normal and early sowing periods (4.5 to 79% PDI and 2.5 to 68 % PDI respectively) and significantly less incidence was observed during the late sown crop i.e., 2.5 to 19 % PDI. Sheath rot disease was present in the panicle initiation and grain filling stages in all the sowing periods (80 to 110 DAT) and relatively more in late and normal sown crops (11.0 to 42.5% and 9.0 to 32.5% PDI respectively), when compared to the early sown crop (5.0 to 21% PDI) (Table 10.2).

Brown spot disease incidence was generally less in all the sowings, and it was observed at the tillering to grain filling stages (70 to 100 DAT) and more in the late sown crop (2.5 to 31.0% PDI) when compared to early sown crop (2.5 to 9.0% PDI). Similarly, BLB severity more in normal sown crop (5.5% PDI) as compared to the early sown crop (5% PDI) (Table 10.2).

Location/ Date	DAT]	Percentage	e of Dise	ase Sevei	ity		
of sowing	DAI	Sh	eath blig	ght	S	heath ro	t	Bi	rown spo	ot
V/DOS		(E)	(N)	(L)	(E)	(N)	(L)	(E)	(N)	(L)
MTU 7029	30 DAT	2.5	-	-	-	-	-	-	-	-
E: 03.07.23	40 DAT	5.0	4.5	-	-	-	-	-	-	-
N: 15.07.23	50 DAT	10.0	8.0	2.5	-	-	-	-	-	-
L: 01.08.23	60 DAT	13.5	10.5	7.0	-	-	-	-	-	-
	70 DAT	19.0	29.0	12.0	-	-	-	-	-	2.5
	80 DAT	43.5	57.5	19.0	-	-	11.0	2.5	4.5	7.5
	90 DAT	59.0	66.5	-	5.0	9.0	26.5	4.0	8.0	11.0
	100 DAT	68.0	79.0	-	19.0	27.5	33.5	9.0	11.0	19.0
	110 DAT	-	-	-	21.0	32.5	42.5	-	-	31.0

TABLE 10.2: Occurrence of different rice diseases in disease observation nursery atChinsurah under Transplanted conditions, Kharif - 2023

Similarly, the sheath blight and sheath rot disease incidence were studied under the direct seeded rice conditions using the same variety MTU 7029. Under DSR conditions, the more sheath blight severity was observed in late sown crop (41% PDI) followed by the normal sown crop (33.5% PDI). In case of sheath rot disease, the early sown crop showed highest disease severity (66.5% PDI) followed by the normal sown crop (35.5% PDI) and the least disease severity was observed (14.5% PDI) in late sown crop (Table 10.3). The late sown crop showed less disease may be the cool temperatures prevail during the maturity stage during November in the North Eastern region of the country.

TABLE 10.3: Occurrence of different rice diseases in disease observation nursery atChinsurah- Direct Seeded Conditions, Kharif - 2023

Location/ Date of	рат		Per	centage of	Disease Sev	verity	
sowing	DAI	Shea	th blight-	DSR	She	ath rot-D	SR
V/DOS		(E)	(N)	(L)	(E)	(N)	(L)
MTU 7029	30 DAT	-	-	-	-	-	-
E: 29.06.23	40 DAT	-	-	-	5.0	-	-
N: 08.07.23	50 DAT	-	-	-	9.0	2.0	-
L: 24.07.23	60 DAT	-	-	-	19.0	5.5	9.0
	70 DAT	-	-	-	32.5	5.5	11.0
	80 DAT	-	6.0	13.5	51.5	29.0	14.5
	90 DAT	5.0	19.0	20.0	59.0	29.0	-
	100 DAT	24.0	26.5	33.5	66.5	35.5	-
	110 DAT	31.0	33.5	41.0	-	-	-

(E=Early; N=Normal; L=Late)

NAWAGAM

Two varieties viz., Gurjari and P-203 were used as test varieties for the purpose of estimating the effects of sowing period viz., early (05.07.2023), normal (20.07.2023) and late (05.08.2023) on the occurrence of Sheath rot disease in Nawagam.

In the case of variety Gurjari, it was observed that the incidence of the disease was relatively more in the late stages of the crop (60 to 100 DAT) in late sown crop (10.0 to 31.89% PDI) and normal (16.67 to 27.09% PDI) and comparatively low incidence was observed from 60 to 100 DAT in early sowing periods (5 to 19.13% PDI). Among the three sowing periods, the incidence of Sheath rot was found to be maximum in the late sown crop (31.89% PDI). The disease was significantly less in the variety P-203 compared to Gurjari, with the initial symptoms started to appear about 90 DAT in the early and at 70 DAT in normal sown crops, progressing gradually thereafter. But in case of late sown crop, symptoms appear at 60 DAT. Further, the percentage disease index was relatively less in the case of the variety P-203 (maximum of 26.09% PDI) when compared to the variety P-203 like the late sown crop was more effected by the sheath rot incidence compared to normal and early sown crops.

TABLE 10.4: Occurrence of different rice diseases in disease observation nursery at Nawagam, Kharif - 2023

Location/]	Percent Disease Ir	ndex			
Date of					Nawagam				
sowing					Sheath rot				
V/DOS	DAT	(E)	(N)	(L)	V/DOS	DAT	(E)	(N)	(L)
Gurjari	30 DAT	-	-	-	P-203	30 DAT	-	-	-
E:05-07-2023	40 DAT	-	-	-	E:05-07-2023	40 DAT	-	-	-
N:20-07-2023	50 DAT	-	-	-	N:20-07-2023	50 DAT	-	-	-
L:05-08-2023	60 DAT	5.00	-	10.00	L:05-08-2023	60 DAT	-	-	10.00
	70 DAT	13.33	16.67	30.00		70 DAT	-	15.00	16.66
	80 DAT	19.33	18.80	32.22		80 DAT	-	17.67	21.20
	90 DAT	28.29	24.10	35.42		90 DAT	11.67	21.11	24.78
	100 DAT	19.13	27.09	31.89		100 DAT	8.88	23.57	23.79
	110 DAT	-	-	-		110 DAT	18.02	25.68	26.09

(E=Early; N=Normal; L=Late)

MANDYA

The progression of two diseases (blast and sheath blight) were studied at three different sowing dates i.e., 08-08-2023 (early), 08.09.2023 (normal) and 06.10.2023 (late) by using two different susceptible varieties like MTU-1001 and IR-64. MTU 1001showed better tolerance for blast disease and late sown crop effected much (17%PDI) compared to early (11.0%PDI) and normal sown crop (9%PDI) in the variety IR 64. In case of MTU 1001, the late sown crop showed more leaf blast disease severity (14% PDI) compared to early (9.50% PDI) and normal sown crops (5.50% PDI). Similarly, the late sown crop of variety MTU 1001 showed more sheath blight disease severity (75% PDI) as compared to early and normal sown crops (Table 10.5).

Location/ Date of		Percentage of Disease Index							
sowing	DAT		BLAST		Sheath blight				
		(E)	(N)	(L)	(E)	(N)	(L)		
MTU 1001	30 DAT	-	-	-	-	-	_		
E:08-08-2023	40 DAT	-	-	-	-	-	-		
N:08-09-2023	50 DAT	-	-	-	-	-	-		
L:06-10-2023	60 DAT	4.50	-	-	19.00	20.00	-		
	70 DAT	4.00	4.50	-	19.00	20.00	15.50		
	80 DAT	7.00	4.00	4.00	25.00	21.00	20.00		
	90 DAT	5.50	4.00	6.50	26.00	26.00	38.50		
	100 DAT	5.50	6.50	8.00	40.00	37.50	55.00		
	110 DAT	9.50	5.50	14.00	53.50	55.00	75.00		
IR 64	30 DAT	-	-	-	-	-	-		
E:08-08-2023	40 DAT	-	-	-	-	-	-		
N:08-09-2023	50 DAT	-	-	-	-	-	-		
L:06-10-2023	60 DAT	5.00	-	-	18.00	19.00	-		
	70 DAT	6.50	4.00	-	20.00	24.50	18.00		
	80 DAT	8.50	6.00	5.00	29.00	25.50	25.00		
	90 DAT	9.00	5.00	9.50	38.50	38.00	53.00		
	100 DAT	9.50	9.00	12.00	50.50	53.50	63.50		
	110 DAT	11.00	9.00	17.00	77.50	77.50	77.50		

TABLE 10.5: Occurrence of different rice diseases in disease observation nursery atMandya, Kharif - 2023

MARUTERU

Two varieties viz., BPT5204 and Swarna (MTU 7029) were tested in Maruteru under three different sowing dates i.e, 22.07.2023 (early), 02.08.2023 (normal) and 21.08.2023 (late), for the variations in the percent disease incidence of the two major rice diseases of this region i.e., Sheath blight and BLB. The crop sown in the early season was having more disease severity (sheath blight) than the crops sown during the normal and late periods.

Among the two varieties tested, the variety BPT5204 was found to be more susceptible to BLB viz., BLB (45.37% PDI), when compared to the variety Swarna 29.61% PDI. Sheath blight severity was more in early sown crop (60.52 % in swarna & 45.78% PDI in BPT 5204) compared to normal and late sown crops. The bacterial leaf blight severity was more in early sown crop (29.61 PDI in swarna & 45.37% PDI in BPT 5204) compared to early and normal sown crops (Table 10.6).

Location/ Date of		Percentage of Disease Index									
sowing			Sheath blig	ht		BLB					
V/DOS	DAT	(E)	(N)	(L)	(E)	(N)	(L)				
	30 DAT	-	-	-	-	-	-				
Swarna	40 DAT	-	-	1.37	-	-	-				
E:22-07-2023	50 DAT	12.99	0.80	43.36	-	-	-				
N:02-08-2023	60 DAT	20.86	6.97	37.46	-	-	-				
L:21-08-2023	67 DAT	55.62	28.69	57.96	-	-	-				
	74 DAT	42.35	43.79	48.00	-	-	-				
	80 DAT	44.94	18.94	61.83	-	-	-				
	90 DAT	60.44	26.51	48.20	-	-	-				
	100 DAT	63.46	36.17	-	29.61	22.55					
	118 DAT	60.52	48.56	-	16.7	12.63	2.22				
BPT 5204	30 DAT	-	-	-	-	-	-				
E:22-07-2023	40 DAT	-	-	0	-	-	-				
N:02-08-2023	50 DAT	0.77	0.00	1.12	-	-	-				
L:21-08-2023	60 DAT	1.67	4.30	4.09	-	-	-				
	67 DAT	14.64	35.68	4.73	-	-	-				
	74 DAT	12.76	17.30	0.00	-	-	20.89				
	80 DAT	24.32	17.53	29.77	-	-	-				
	90 DAT	5.05	38.57	30.72	-	-	-				
	100 DAT	26.29	34.65	-	14.61	35.55	7.41				
	118 DAT	45.78	38.30	-	45.37	21.62	-				

Table 10.6: Occurrence of different rice diseases in disease observation nursery at Maruteru, Kharif - 2023

MONCOMPU-TP

Four different varieties i.e., Uma, Shreyas, Prathyasa and Pournami were sown on different dates i.e, 24.07.2023 (early), 08.08.2023 (normal) and 23.08.2023 (late) for the studies on the effect of the different time of sowing on Sheath blight and BLB incidence on rice. The intensity of the disease was very less this year, may be because of the relatively dry weather conditions during the entire cropping seasons.

Among the different sowing period, both Sheath blight disease severity was relatively high during the fag end of the crop in the late sown crop of Uma and Pournami compared to early and normal sown crops (23.61% and 9.90% PDI). Sheath blight was more in the normal sown crop of varieties Prathyasa and Shreyas (44.93% and 30.21% PDI).

The incidence of BLB was very less this year and normal sown crop effected much compared to early and late sown crops (Table 10.7). BLB severity was more in varieties Uma, Shreays and Pournami in the normal sown crop (51.12%, 21.36% and 23.83% PDI respectively).

Level Date f		Percentage of Disease Index							
Location/ Date of	DAT	S	Sheath bligh	t		BLB			
soming		(E)	(N)	(L)	(E)	(N)	(L)		
Uma	30 DAT	-	-	-	-	-	-		
E:24-07-2023	40 DAT	-	-	-	-	-	-		
N:08-08-2023	50 DAT	-	-	-	-	-	-		
L:23-08-2023	60 DAT	-	-	-	-	-	-		
	70 DAT	-	-	-	-	-	-		
	80 DAT	-	-	-	-	-	-		
	90 DAT	2.80	7.13	9.21	8.10	24.04	23.06		
	100 DAT	4.45	15.94	17.02	16.75	42.98	36.56		
	110 DAT	7.94	20.56	23.61	21.61	51.12	42.47		
Shre yas	30 DAT	-	-	-	-	-	-		
E:24-07-2023	40 DAT	-	-	-	-	-	-		
N:08-08-2023	50 DAT	-	-	-	-	-	-		
L:23-08-2023	60 DAT	-	-	-	-	-	-		
	70 DAT	-	-	-	-	-	-		
	80 DAT	-	-	-	-	-	-		
	90 DAT	1.78	8.92	9.52	0.16	9.06	4.20		
	100 DAT	3.67	23.28	17.78	1.83	16.89	8.00		
	110 DAT	7.34	30.21	24.51	3.42	21.36	16.90		
Prathyasa	30 DAT	-	-	-	-	-	-		
E:24-07-2023	40 DAT	-	-	-	-	-	-		
N:08-08-2023	50 DAT	-	-	-	-	-	-		
L:23-08-2023	60 DAT	-	-	-	-	-	-		
	70 DAT	-	-	-	-	-	-		
	80 DAT	-	-	-	-	-	-		
	90 DAT	11.90	21.66	3.11	2.00	2.05	3.59		
	100 DAT	25.55	34.49	5.68	4.35	5.34	9.65		
	110 DAT	33.56	44.93	9.75	9.15	14.02	14.17		
Pournami	30 DAT	-	-	-	-	-	-		
E:24-07-2023	40 DAT	-	-	-	-	-	-		
N:08-08-2023	50 DAT	-	-	-	-	-	-		
L:23-08-2023	60 DAT	-	-	-	-	-	-		
	70 DAT	-	-	-	-	-	-		
	80 DAT	-	-	-	-	-	-		
	90 DAT	0.00	1.00	1.91	1.47	6.84	1.35		
	100 DAT	1.50	3.12	6.44	4.36	15.08	6.85		
	110 DAT	2.92	6.89	9.90	6.08	23.83	12.15		

TABLE 10.7: Occurrence of different rice diseases in disease observation nursery atMoncompu, Kharif - 2023

MONCOMPU-DSR

In Direct seeded rice (DSR) conditions, the incidence of sheath blight and BLB was comparatively more in comparison to the transplanted conditions. Sheath blight disease severity was more in Prathyasa and Pournami in late sown crop of DSR (19.10% and 22.82% PDI respectively) and in the case of BLB, late sown crop of Uma and Prathyasa showed the more disease severity compared to the early and normal sowings (45.83% and 6.78% PDI respectively) (Table 10.8).

TABLE 10.8: Occurrence of different rice diseases in disease observation nursery atMoncompu-under DSR Conditions, *Kharif* – 2023

Location/ Date of		Percentage of Disease Index							
sowing	DAT	S	Sheath bligh	t		BLB			
V/DOS		(E)	(N)	(L)	(E)	(N)	(L)		
Uma	30 DAT	-	-	-	-	-	-		
E:24-07-2023	40 DAT	-	-	-	-	-	-		
N:08-08-2023	50 DAT	-	-	-	-	-	-		
L:23-08-2023	60 DAT	-	-	-	-	-	-		
	70 DAT	-	-	-	-	-	-		
	80 DAT	-	-	-	-	-	-		
	90 DAT	9.23	5.02	3.33	10.15	14.01	22.75		
	100 DAT	15.86	12.71	9.07	20.10	22.73	33.89		
	110 DAT	21.56	17.14	15.92	24.83	32.51	45.83		
Shrevas	30 DAT	-	-	-	-	-	-		
E:24-07-2023	40 DAT	-	-	-	-	-	-		
N:08-08-2023	50 DAT	-	-	-	-	-	-		
L:23-08-2023	60 DAT	-	-	-	-	-	-		
	70 DAT	-	-	-	-	-	-		
	80 DAT	-	-	-	-	-	-		
	90 DAT	0.00	1.18	0.00	2.06	3.05	0.00		
	100 DAT	3.00	3.67	1.07	5.45	6.58	3.08		
	110 DAT	5.93	7.04	5.78	7.24	12.92	7.29		
Prathyasa	30 DAT	-	-	-	-	-	-		
E:24-07-2023	40 DAT	-	-	-	-	-	-		
N:08-08-2023	50 DAT	-	-	-	-	-	-		
L:23-08-2023	60 DAT	-	-	-	-	-	-		
	70 DAT	-	-	-	-	-	-		
	80 DAT	-	-	-	-	-	-		
	90 DAT	5.09	0.35	7.12	1.65	0.00	0.74		
	100 DAT	8.25	1.14	10.44	2.54	1.45	2.64		
	110 DAT	9.55	2.12	19.10	3.72	4.12	6.78		
Pournami	30 DAT	-	-	-	-	-	-		
E:24-07-2023	40 DAT	-	-	-	-	-	-		
N:08-08-2023	50 DAT	-	-	-	-	-	-		
L:23-08-2023	60 DAT	-	-	-	-	-	-		
	70 DAT	-	-	-	-	-	-		
	80 DAT	-	-	-	-	-	-		
	90 DAT	8.84	0.00	7.90	4.50	1.17	3.00		
	100 DAT	14.96	1.28	13.14	6.65	4.54	7.79		
	110 DAT	21.67	2.78	22.82	13.62	9.25	12.83		

(E=Early; N=Normal; L=Late)

RAIPUR

Two varieties viz., Swarna and Rajeshwari were tested in Raipur under three different sowing dates i.e.,10-06-2023 (early), 05-07-2023 (normal) and 30-07-2023 (late), for the variation in the percent disease incidence of the major rice disease of this region i.e., Sheath blight under direct seeded rice (DSR) conditions.

The variety Rajeshwari was more tolerant to sheath blight disease compared to the variety Swarna. Sheath blight disease severity was more in early and late sown crop of variety

Rajeshwari (39.70% and 39.95% PDI) than normal sown crop. in case of variety rajeshwari the late sown crop showed more sheath blight disease severity (18.99% PDI) (Table 10.9).

 TABLE 10.9: Occurrence of different rice diseases in disease observation nursery at Raipur-under DSR Conditions, *Kharif* – 2023

 Percent Disease Index

Leastinn/ Data	Percent Disease Index											
of sowing	Raipur											
or sowing					Sheath blight							
V/DOS	DAT	(E)	(N)	(L)	V/DOS	DAT	(E)	(N)	(L)			
Swarna	30 DAT	8.89	0.00	10.00	Rajeshwari	30 DAT	6.93	2.28	6.51			
E:10-06-2023	40 DAT	15.95	8.11	17.61	E:10-06-2023	40 DAT	11.95	5.31	10.51			
N:05-07-2023	50 DAT	18.00	9.27	19.30	N:05-07-2023	50 DAT	12.78	6.55	11.73			
L:30-07-2023	60 DAT	22.44	10.16	23.33	L:30-07-2023	60 DAT	13.33	8.33	13.41			
	70 DAT	27.78	11.61	29.78		70 DAT	14.21	9.95	13.62			
	80 DAT	35.01	15.30	35.22		80 DAT	14.73	12.78	13.83			
	90 DAT	37.05	17.60	37.33		90 DAT	16.00	15.45	14.90			
	100 DAT	38.40	19.05	38.95		100 DAT	16.02	17.10	15.73			
	110 DAT	39.70	22.01	39.95		110 DAT	17.69	18.99	16.33			

(E=Early; N=Normal; L=Late)

PUSA

Variety Sugandha was used as the susceptible variety against brown leaf spot and the crop was sown in i.e., 11.07.2023 (early), 25.07.2023 (normal) and 12.08.2023 (late). The incidence of brown leaf spot was started at 50 days after transplanting. The incidence of brown leaf spot was more in late sown crop (37% PDI) compared to normal (12% PDI) and early sown crops (17.5% PDI) (Table 10.10).

TABLE 10.10: Occurrence of different rice diseases in disease observation nursery atPUSA Kharif – 2023

BROWN LEAF SPOT										
Location/date of sowing	Pe	rcentage of	Disease severity							
V/DOS	DAT	(E)	(N)	(L)						
Sugandha	30 DAT	-	-	-						
E:11-07-2023	40 DAT	-	-	-						
N:25-07-2023	50 DAT	-	-	4						
L:12-08-2023	60 DAT	-	-	8.5						
	70 DAT	-	-	18						
	80 DAT	1.5	1	24						
	90 DAT	4	3.5	28.5						
	100 DAT	9	6	33						
	110 DAT	17.5	12	37						

(E=Early; N=Normal; L=Late)

INFLUENCE OF WEATHER PARAMETERS AND DATE OF SOWING ON DIFFERENT DISEASES AT DIFFERENT LOCATIONS

To study the impact of weather parameters (temperature, relative humidity and rainfall) in the progress of the disease, the area under disease progress curve was measured and analysed. Accordingly, at the center Bankura, blast, brown spot and BLB diseases were analysed and correlated with the weather parameters. Two highly susceptible varieties i.e., TN 1 and Danaguri were used for this study. With decreasing rainfall, the intensity of the brown spot is increasing and vice versa (Table 10.11).

			Banku	ıra		AUDPC						
Sowing time	Tempe	e rature	Relative	Humidity	Dain Fall	Blast		Brown spot		BLB		
	max	min	max	min		V1	V2	V1	V2	V1	V2	
Early	31.55	22.61	78.71	-	228.57	407	297	954	845	498	489	
Normal	31.20	22.20	78.69	-	210.27	363	320	457	345	211	178	
Late	30.86	21.58	78.18	-	158.84	482	345	1334	1239	655	588	

Table 10.11: Disease Progression with respect to weather factors at Bankura

(V1= TN 1; V2= Danaguri)

NAWAGAM

At the centre Nawagam, the sheath rot disease was analysed with the data obtained from two verities viz., Gurjari and P-203. The results indicating that sheath rot disease progression was more rapid in Gurjari compared to the P-203. With increasing rainfall, the sheath rot disease was decreased in the case of both the varieties Gurjari and P-203 (1236 and 1095) (Table 10.12). the early sown crop which received the more rainfall showed the least disease progress compared to the normal and late sown crops which received the least rainfall (Table 10.12).

				AUDPC				
Sowing time	Tempe	erature	Relative	Humidity	Dain Fall	Sheath rot		
	max	min	max	min	Каш гап	V1	V2	
Early	32.3	21.7	80.3	59.4	690.0	755	296	
Normal	32.2	21.5	80.5	59.0	480.0	731	902	
Late	32.15	21.24	80.31	58.10	347.8	1236	1095	

Table 10.12: Disease Progression with respect to weather factors at Nawagam

(V1=Gurjari; V2=P-203)

MANDYA

At Mandya centre, the leaf blast and sheath blight diseases were analysed with the data obtained for two varieties viz., MTU1001 and IR64. The results indicated that the leaf blast disease was more rapidly progressing in MTU 1001 (312) when compared to IR 64 (440). The results shows that with increasing rainfall, the progression of the leaf blast disease was more (Table 10.13). The highest AUDPC of leaf blast disease was noticed in the early sowings of the both the varieties i.e., MTU 1001 and IR 64 (312 and 440). Incase of sheath blight disease, the late sown crop showed more disease progress compared to the early and normal sown crops in both the varieties tested i.e., MTU 1001 and IR 64. It was also observed that the Leaf blast disease was more favored by rainfall, this may be due to the fact

that rainfall would have helped the pathogen mycelia and spores to spread more easily to the surrounding plants. (Table 10.13).

		Mandya		AUDPC					
Sowing time	Tempe	rature	Dain Fall	Bl	ast	Sheath blight			
	max	min		V1	V2	V1	V2		
Early	30.3	19.4	820.5	312	440	1557	1947		
Normal	29.8	19.3	751.5	217	285	1520	1992		
Late	30.2	18.9	567.0	255	350	1665	1982		

Table 10.13: Disease Progression with respect to weather factors at Mandya

(V1= MTU 1001; V2= IR 64)

MONCOMPU

The AUDPC of BLB was observed to differ among the four varieties tested at Moncompu centre. The AUDPC was highest (808) in the lowest rainfall season (late sown with lowest rainfall (1346 mm) in the variety Uma. in the variety Prathyasa, the intensity of the BLB incidence was increasing with the decreasing rainfall (Table 10.14). comparatively the variety Uma found tolerant to BLB than the remaining varieties tested. there is no much correlation was observed in case of sheath blight disease incidence with the rainfall received during the year in the Moncompu region in transplanted conditions.

 Table 10.14: Disease Progression with respect to weather factors at Moncompu

		Ν	Aoncom	npu		AUDPC								
Sowing time	Temperature		Relative Humidity		Rain Fall		S	HB			В	LB		
	Max	Min	Max	Min		V1	V2	V3	V4	V1	V2	V3	V4	
Early	32.48	24.79	87.11	78.45	1463.10	112	91	542	30	357	37	109	89	
Normal	32.52	24.84	87.17	78.26	1389.00	334	473	786	76	926	366	144	338	
Late	32.53	24.80	87.51	78.41	1346.80	380	396	137	133	808	206	203	143	

(V1=Uma; V2= Shreyas; V3= Prathyasa; V4=Pournami)

MONCOMPU-DSR

In this center, direct seeded rice also tested for the prevalence of sheath blight and bacterial leaf blight diseases. the is a significant correlation was observed in the varieties Uma, Prathyasa and Pournami, with increased rainfall the intensity of the sheath blight disease was increasing (Table 10.15). the highest AUDPC was reported in early sown variety of Uma (359) which was received the more rainfall (1463) compared normal and late sown crops (Table 10.15). same trend is followed in the variety Pournami, with increased rainfall, the intensity of the disease increased.

		Ν	Moncon	ıpu		AUDPC							
Sowing time	Тетр	erature	Relative Humidity		tive dity Rain Fall		SH	B			B	LB	
	Max	Min	Max	Min		V1	V2	V3	V4	V1	V2	V3	V4
Early	32.48	24.79	87.11	78.45	1463.10	359	60	181	346	427	111	60	180
Normal	32.52	24.84	87.17	78.26	1389.00	263	84	25	27	530	161	35	103
Late	32.53	24.80	87.51	78.41	1346.80	204	40	271	323	796	67	68	172

Table 10.15: Disease Progression with respect to weather factors at Moncompu-DSR

(V1=Uma; V2= Shreyas; V3= Prathyasa; V4=Pournami)

RAIPUR

The AUDPC of sheath blight disease of two varieties (Swarna and Rajeshwari) were studied in relation to the weather factors. The variety Swarna was more susceptible to sheath blight (2315) compared to the variety Rajeshwari (1084). the variety Rajeshwari showed increased progression of the sheath blight disease with increased rainfall, as the early sown crop received more rainfall (1591) showed the highest AUDPC (1148). but in case variety Swarna, the late sown crop showed highest AUDPC (2315) which received the least rainfall (866) as compared to the early and normal sown crops (Table 10.16).

 Table 10.16: Disease Progression with respect to weather factors at Raipur

				AUDPC				
Sowing time	Tempe	erature	Relative	Humidity	Dain Fall	SHB		
	max	min	max	min	Каш ган	V1	V2	
Early	31.70	21.96	86.35	56.38	1591.1	2234	1148	
Normal	30.91	21.23	88.74	56.98	1364.70	1021	872	
Late	30.72	20.55	88.54	54.12	866.5	2315	1084	

(V1=Swarna, V2=Rajeshwari)

IV. DISEASE MANANGMENT TRIALS-2023

Trial No.11: EVALUATION OF COMBINATION FUNGICIDES AGAINST LOCATION SPECIFIC DISEASES

The trial was conducted with an objective to evaluate commercially available combination fungicides those are registered under Central Insecticides Board (CIB), Goverment of India (GOI) against various rice diseases. Seven different fungicides *viz.*, mancozeb 50% + thiophanate methyl 25% WG (3.0 g/l), kasugamycin 5% + copper oxychloride 45% WP (1.5 g/l), azoxysrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l), fenoxanil 5% + isoprothiolane 30% EC (2 ml/l), azoxystrobin 14 % + epoxiconazole 9 % SC (1.5 ml/l), picoxystrobin 7.05% + propiconazole 11.7% SC (2 ml/l), and tebuconazole 50%+ trifloxystrobin 25% w/w WG (0.4 g/l) were used for the study. These products bio-efficacy were tested against fungal diseases of rice which are locally important in a particular rice growing region. The recommended dose of each product was applied to the diseased plants at the rate of two sprays with an intravel of 10-15 days. These molecules comprises of different formulations such as suspension concentrates (SC), wettable powder (WP), wettable granules (WG) and emulsifyable concentrates (EC). The trail was conducted during *Kharif*-2023 by using Randomised Block Design (RBD) as a statistical method with four or three replications in each centre.

The trial was proposed at 35 centres *viz.*, Aduthurai, Bankura, Chatha, Chinsurah, Chiplima, Coimbatore, Cuttack, Faizabad, Gangavathi, Gerua, Ghaghraghat, Hazaribagh, ICAR-IIRR, Jagdalpur, Kaul, Lonavala, Ludhiana, Malan, Mandya, Maruteru, Moncompu, Mugad, Navsari, Nawagam, Pantnagar, Pattambi, Ponnampet, Pusa, Raipur, Rajendranagar, Ranchi, Rewa, Sabour, Titabar and Varanasi across the rice growing regions in India. About 32 centres had conducted the experiment. The experiment was conducted with locally popular rice varieties among the farmers at each testing location. In general, sowings were taken up during June and July across the locations except in Gangavathi and Ponnampet, where sowing was done in the month of August. At Aduthurai sowing was done late in the month of September. The details related to diseases against these chemicals were tested, test variety used, date of sowing, date of transplanting, method of screening, date of harvesting are mentioned in the Table 11.1

In general, fungicides were sprayed after noticing the initial symptoms at all the locations. Each combination fungicide was applied at the rate of two sprays with an intravel of 15 days in all the test centres except Aduthurai and Moncompu where one spray was given. The fungicides were evaluated against leaf blast (11 locations), neck blast (10 locations), sheath blight (15 locations), brown spot (eight locations), sheath rot (four locations), grain discoloration (two locations) and stem rot (one location).

Leaf blast: The fungicides were evaluated against leaf blast disease at eleven locations cross the rice growing region of the country. In all the centres uniformly two sprays of fungicides were applied. Disease severity was recorded at all the test locations except Ghaghraghat where only disease incidence was observed.

ICAR-IIRR - AICRPR - Annual Progress Report 2023, Vol.2, Plant Pathology

TUT		TINT TO STIRE OF TINT	giviual v Y aluauoli	agains t lor	auous de nome	niscases ut t		- fi imir			
							Dat	ce of activi	ties		
S. No	Location	Disease Recorded	Test Variety	Screening	Sowing/ Transplanting	Inoculation	Initial symptom	No of Spray	Spraying	O bservation	Harvesting
-	Aduthurai	Brown spot/ Sheath rot	ADT-54	Natural	18.09.2023/ 18.10.2023	ı	18.12.2023	1	18.12.2023	02.01.2024	22.01.2024
2	Bankura	Brown spot/ Sheath blight	Swarna (MTU7029)	Artificial	13.06.2023/ 15.07.2023	03.09.2023	10.09.2023	2	10.09.2023 24.09.2023	09.09.2023 23.09.2023 21.10.2023	31.10.2023
ю	Chatha	Brown spot	Basmati-370	Natural	20.06.2023/ 15.07.2023	ı	23.09.2023	2	28.09.2023 13.10.2023	I	20.11.2023
4	Coimbatore	Leaf blast	CO39	Natural	14.07.2023/ 02.08.2023	,	14.09.2023	2	19.09.2023 01.10.2023	27.09.2023 08.10.2023	02.11.2023
5	Chinsurah	Sheath blight	Swarna (MTU 7029)	Artificial	16.06.2023/ 11.07.2023	22.08.2023	28.08.2023	2	01.09.2023 11.09.2023	ı	07.11.2023
9	Chiplima	Sheath blight/ Neck blast	Swarna	Artificial/ Natural-Nb	05.07.2023/ 05.08.2023	14.09.2023	30.09.2023 18.10.2023	2	06.10.2023 20.10.2023	20.10.2023 06&21.11.2023	11.12.2023
7	Cuttack (ICAR- NRRI)	Sheath blight	Tapaswini	Artificial	12.06.2023/ 26.07.2023	06.09.2023	16.09.2023	2	26.09.2023 04.10.2023	15.10.2023 24.10.2023	06.11.2023
•		Leaf blast	HR-12	Artificial	08.07.2023/ 13.08.2023	20.10.23	1	2	05.09.2023/ 16.09.2023	18.09.2023/ 28.09.2023	05.12.2023
0	ICAR-IIKK	Sheath blight	BPT-5204	Artificial	08.07.2023/ 13.08.2023	17.10.23	20.10.23	2	20.10.2023 30.10.2023	10.11.23	05.12.2023
6	Faizabad (Masodha)	Sheath blight	Pusa Basmati 1	Artificial	28.06.2023/ 26.07.2023	26.09.2023	03.10.2023	2	04.10.2023 19.10.2023	17.10.2023 09.11.2023	18.11.2023
10	Gangavathi	Sheath blight	GNV-1089	Artificial	30.08.2023/ 06.09.2023	08.10.2023	15.10.2023	2	$\frac{16.10.2023}{27.10.2023}$	15&23.10.2023 05.11.2023	22.12.2023
11	Ghagraghat	Leaf Blast/ Neck Blast	Jalpriya	Natural	25.06.2023/ 24.07.2023	ı	1	2	20.09.2023 19.10.2023	20.12.2023	25.12.2023
1	Uozonihooh	Leaf blast	C039	Natural	01 08 2023	ı	11.09.2023	2	11.09.2023 22.09.2023	18&29.09.2023 05.10.2023	23.10.2023
14	114241104811	Brown spot	Sahbhagidhan	Artificial	6707.00.10	ı	06.09.2023	2	07.09.2023 19.09.2023	13&26.09.2023 03.10.2023	10.11.2023
13	Jagadalpur	Leaf blast/ Neck blast	Swarna	Natural	05.07.2023/ 31.07.2023	ı	22.08.2023	3	03&17.09.23 02.10.2023	4&18.09.2023 02.10.2023	11.12.2023
14	Kaul	Neck blast	PB1121	Natural	25.07.2023	ı	07.10.2023	2	11.10.2023 26.10.2023	10.11.2023	20.11.2023
15	Lonavala	Leaf Blast/ Neck blast	EK-70	Natural	28.06.2023/ 21.07.2023	I	08.09.2023	2	09.09.2023 25.09.2023	09.09.2023 27.09.2023 27.09.2023 10.10.2023	31.10.2023
16	Ludhiana	Sheath blight	PR114	Artificial	07.06.2023/	11.09.2023		2	13.09.2023 77.09.2023	07.10.2023	25.10.2023

Table 11.1: Experimental details of fungicidal evaluation against location-specific diseases of rice during. *Kharif*-2023

ICAR-IIRR - AICRPR - Annual Progress Report 2023, Vol.2, Plant Pathology

							Dat	te of activi	ties		
. No	Location	Disease Recorded	Test Variety	Screening	Sowing/ Transplanting	Inoculation	Initial symptom	No of Spray	Spraying	O bservation	Harvesting
17	Mandya	Leaf blast/ Sheath blight/ Neck blast	P enna super	Artificial- Bl, Shb Natural-Nb	11.08.2023/ 12.09.2023	05.11.2023 06.11.2023 06.12.2023	28.10.2023 15.11.2023 30.11.2023	5	15.11.2023 01.12.2023 30.11.2023	13.11.2023 28.11.2023 10&12.12.2023	01.01.2024
18	Maruteru	Sheath blight Neck blast	Swarna (MTU 7029)	Artificial Natural-Nb	10.07.2023/ 10.08.2023	07.09.2023	16.09.2023	2	20.09.2023 05.10.2023	21 & 28.09.2023 06 & 25.10.2023 23.11.2023	02.12.2023
19	Moncompu	Sheath blight/ Grain discolouration	Uma	Natural	07.06.2023/ 28.07.2023 13.06.2023/ 28.07.2023	I	10.08.2023	1	6.10.2023	4.10.2023 2.11.2023	11.11.2023
20	Navasari	Sheath rot	GR-11	Natural	03.07.2023/ 29.07.2023	ı	16.09.2023	2	27.09.2023 08.10.2023	03.10.2023 14.10.2023	27.11.2023
21	Nawagam	Leaf blast/ Sheath rot	Gurjari	Artificial/ Natural- Shrt	21.07.2023/ 29.08.2023	30.09.2023 -	12.10.2023/ 10.10.2023	2	12.10.2023 27.10.2023	12.10.2023 27.10.2023 10.11.2023	05.12.2023
22	Pantnagar	Sheath blight	Pant Dhan-4	Artificial	15.06.2023/ 06.07.2023	18.08.2023	28.08.2023	2	08.09.2023 18.09.2023	03.10.2023 10.10.2023	16.11.2023
23	Pattanbi	Brown Spot/ Sheath blight	Uma	Natural	13.07.2023/ 02&03.08.2023	ı	15.10.2023	2	20.10.2023 02.11.2023	17.10.2023	30.11.2023
24	Ponnampet	Leaf blast/ Neck blast	Intan	Natural	05.08.2023/ 29.08.2023	I	19.09.2023/ 02.12.2023	2	17.09.2023 10.12.2023	14.09.2023 06.01.2024	25.01.2024
25	Pusa	Brown spot	Pankaj (HS)	Artificial	15.06.2023/ 24.07.2023	27.09.2023	11.09.2023	2	$\frac{10.10.2023}{27.10.2023}$		28.11.2023
26	Raipur	Sheath blight	Swarna	Artificial	-08.06.2023	13.10.2023	ı	2	15.10.2023 23.10.2023	24.10.2023	27.11.2023
27	Rajendranagar	Neck blast/ Sheath blight/ Grain discolouration	Tellahamsa	Artificial- shb Nat-Nb,Gd	11.07.2023/ 31.07.2023	05.10.2023 28.09.2023	01.10.2023	2	03.10.2023 17.10.2023	02 & 11 & 17 & 26.10.2023 & 03 & 06.11.2023	29.11.2023
28	Ranchi	Leaf blast/ Neck blast	Pusa sugandha-3	Artificial	15.07.2023/ 11.08.2023	25.09.2023	28.09.2023	2	27.09.2023 07.10.2023	17.10.2023 29.11.2023	10.12.2023
29	Rewa	Leaf blast	4Sd	Artificial	18.07.2023/ 01.08.2023	10.09.2023	20.09.2023	3	27.09.2023 05.10.2023	01.10.2023 18.10.2023	25.11.2023
30	Sabour	Brown spot	RajendraShweta	Natural	27.06.2023/ 29.07.2023	I	16.08.2023	2	25.08.2023 05.09.2023	30.08.2023	25.11.2023
31	Titahar	Sheath rot	Gitesh	Artificial	15.07.2023/ 19.08.2023	20.09.2023	01.10.2023	2	05.10.2023 20.10.2023	15.11.2023	28.12.2023
10		Stem rot	Basundhara	Artificial	15.07.2023/ 21.08.2023	28.09.2023	10.10.2023	2	14.10.2023 30.10.2023	21.11.2023	30.12.2023
32	Varanasi	Brown spot	HUR4-3	Natural	21.06.2023/ 29.07.2023	ı	06.09.2023	2	21.09.2023 06.10.2023	18.11.2023	22.11.2023

Both disease severity and incidence were observed at Lonavala, and Nawagam. The test fungicidal products were evaluated against the disease under artificial inoculation of blast pathogen at IIRR, Mandya, Nawagam, Ranchi and Rewa and natural infection at Coimbatore, Ghaghraghat, Hazaribagh, Jagdalpur, Lonavala, Mandya and Ponnampet. Disease severity at test locations in check plots varied from 25.5% (Rewa) to 75.6% (IIRR). Severity on check plot was very high (>50%) at IIRR (75.6%), Jagdalpur (73.3%) and Hazaribagh (71.9%); high (>30-50%) at and Ponnampet (44.8%), Ranchi (43.2%), Lonavala (40.3%), Mandya (38.5%), Nawagam (37.9%), Coimbatore (31.5%) and moderate (20-30%) at Rewa (25.4%). Disease incidence at Rewa in check plot was about 32.5%. Disease incidence was very high at Nawagam (83.6%) and Ghaghraghat (79.9%); and low at Lonavala (15.8%) in check plots.

All eight fungicidal treatments were significantly reduced the disease severity and incidence at all test locations when compared to control. The combination product viz., trifloxystrobin 25% + tebuconazole 50% WG (0.4g/l) was significantly reduced the severity at four locations viz., Lonavala (13.8%), Nawagam (18.8%), Ponnampet (17.5%), and Rewa (10.8%). Besides, other combi-product azoxystrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l) also significantly reduced the severity at three locations viz., Hazaribagh (22.9%), Jagdalpur (28.3%), and Ranchi (6.6%) and also on par with other fungicides at three locations viz., Coimbatore (11.6%), IIRR (12.6%) and Mandya (6.7%). Besides, the same treatment (T3) showed low mean disease severity (16.5%) from all the test centres followed by tebuconazole 50%+ trifloxystrobin 25% w/w WG (0.4 g/l) (Mean DI: 20.6%). Regarding disease incidence, treatment (T7) trifloxystrobin 25% + tebuconazole 50% WG (0.4g/l) was significantly reduced the incidence at Ghaghraghat (20%), Lonavala (8.2%) and on par with other fungicides at Nawagam (60.8%). The average minimum disease incidence from three locations was observed at tebuconazole 50%+ trifloxystrobin 25% w/w WG (0.4 g/l) treatment (29.7%) followed by azoxystrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l) (DI: 33.3) (Fig.11.1A and Table 11.2).

Figure 11.1A: Fungicides against Leaf blast, K-2023

The grain yield data was recorded at all eleven test locations and observed that all treated plots was superior to check plot (3784 Kg/ha). Treatment (T7) tebuconazole 50%+

trifloxystrobin 25% w/w WG (0.4 g/l) was superior in increasing the yield (4191 Kg/ha) compared to the other treatments (Table 11.3).

Neck blast: The trails were conducted at ten locations to know the efficacy of the test product against neck blast disease. Two sprays of fungicidal treatments were given at all the centres. The test fungicidal products were evaluated against the disease incidence under natural condition at all the centres. Disease incidence was very high (>50%) at Jagdalpur (64.4%), Ghaghraghat (60.3%), and Kaul (51%); High at Ponnampet (41.2%), Chiplima (37.5%) and Mandya (35%); moderate (20-30%) at Ranchi (23.3%), Rajendranagar (18.2%); and low (>20%) at Maruteru (13.4%) and Lonavala (11.8%) in check plot. The performance of all the six fungicidal treatments were superior in reducing the neck blast incidence at all the test locations compare to control plot (DI: 35.6%).

The formulations *viz.*, tebuconazole 50% + trifloxystrobin 25% w/w WG (0.4g/l) was significantly reduced the incidence of the neck blast at four locations viz., Ghaghraghat (18.1%), Lonavala (4.3%), Ponnampet (12.1%) and Rajendranagar (4.7%) when compared to other treatments. Besides, the same combination fungicide was statistically on par with the best treatments at Chiplima (15.3%) and Ranchi (7%) for minimising the neck blast incidence. However, in two locations viz., Chiplima (17.5%) and Mandya (8.2%) showed significantly less incidence in azoxysrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 g/l) sprayed (T3) plots compared to other fungicidal treatments. However, low mean disease incidence (13%) was observed from the treatment (T3) azoxysrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 g/l) applied plots from test locations followed by tebuconazole 50%+ trifloxystrobin 25% w/w WG (0.4 g/l) where mean disease incidence was 14%. (Fig. 11.1B; Table 11.4). In Maruteru, all eight treatments were non-significant with each other in controlling the neck blast incidence.

Figure 11.1B: Fungicides against Neck blast, K-2023

All the locations were recorded the grain yield except Maruteru and Rajendranagar. The mean yield across the locations in check plot was 3301 kg/ha. Among eight fungicidal treatments, azoxysrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 g/l) sprayed plot produced highest yield (4935 Kg/ha) followed by tebuconazole 50%+ trifloxystrobin 25% w/w WG (0.4 g/l) (4811 Kg/ha), when compared to other combination fungicidal treatments (Table 11.5).

ICAR-IIRR - AICRPR - Annual Progress Report 2023, Vol.2, Plant Pathology

	D	0			1	ofhlas	t die a ne	COVO 1						Ч	IU	
Treatments	Dosage/L	CBT	HZB	JDP	LNV	IIRR	MND	DWG	PNP	RCI	REW	Mean	GGT	LNV	DWG	Mean
T1 - Mancozeb 50% + Thiophanate methyl 25% WG	3.0 g/l	15.4 (23)	29.6 (32.9)	39.4 (38.8)	22.8 (28.4)	22.2 (28)	9.6 (18)	21 (27.2)	24.5 (29.6)	21.1 (27.1)	19.3 (4.5)	22.5	25 (29.9)	13.2 (3.7)	62.5 (52.2)	33.6
T2 - Kasugamycin 5% + copper oxychloride 45% WP	1.5 g/l	17.1 (24.3)	26.1 (30.7)	36.1 (36.9)	20.8 (27)	13.7 (21.6)	13.3 (20.8)	32.8 (34.8)	26.8 (31.1)	13.5 (21.3)	16.9 (4.2)	21.7	28.4 (32.2)	12 (3.6)	77.4 (61.6)	39.3
T3 - Azoxysrobin 5.1% + Tebuconazole 9.1% + Prochloraz 18.2% EC	3.5 ml/l	11.6 (19.8)	22.9 (28.5)	28.3 (32.1)	18.8 (25.6)	12.2 (20.4)	6.7 (14.9)	24.1 (29.3)	19.7 (26.2)	6.6 (14.5)	15 (3.9)	16.6	26 (30.6)	9.2 (3.1)	64.8 (53.6)	33.3
T4 - Fenoxanil 5% + Isoprothiolane 30% EC	2 ml/l	16.5 (23.9)	24.9 (29.9)	37.8 (37.9)	17.8 (24.9)	12.6 (20.7)	8.1 (16.4)	29.7 (32.8)	22.4 (28.2)	30.1 (33.1)	14.4 (3.9)	21.4	31.7 (34.2)	8.4 (3)	72.4 (58.4)	37.5
T5 - Azoxystrobin 14% + Epoxiconazole 9% SC	1.5 ml/l	16.9 (24.2)	50.5 (45.2)	32.8 (34.8)	22.8 (28.4)	15.2 (22.8)	9.6 (17.9)	26.3 (30.7)	21.6 (27.6)	19 (25.6)	12.9 (3.7)	22.7	27.4 (31.5)	12 (3.6)	70.1 (56.9)	36.5
T6 - Picoxystrobin 7.05% + Propiconazole 11.7% SC	2 ml/liter	16.7 (24.1)	49.3 (44.5)	32.2 (34.5)	20.8 (27)	15.6 (23.2)	6.7 (14.9)	30.1 (33.2)	20.5 (26.8)	15.2 (22.7)	12.4 (3.6)	21.9	24.1 (29.3)	10.4 (3.3)	72.7 (58.5)	35.7
T7 - Tebuconazole 50% + Trifloxystrobin 25% w/w WG	0.4 g/l	13 (21)	49.9 (44.8)	38.9 (38.5)	13.8 (21.7)	27 (31.3)	8.1 (16.5)	18.8 (25.5)	17.5 (24.6)	9.1 (17.3)	10.8 (3.4)	20.7	20 (26.5)	8.2 (3)	60.8 (51.3)	29.7
T8 - Untreated control	T	31.5 (34)	71.9 (57.9)	73.3 (58.9)	40.3 (39.3)	75.6 (60.3)	38.5 (38.2)	37.9 (37.9)	44.8 (42)	43.2 (41)	25.5 (5.1)	48.2	79.9 (63.3)	15.8 (4.1)	83.6 (66.4)	59.8
General Mean	I	17.3	40.6	39.9	22.2	24.3	12.6	27.6	24.7	19.7	15.9	ı	32.8	89.2	70.5	ı
LSD @ 5% (P=0.05)	I	1.4	0.9	3.8	0.9	1.5	6.0	3.6	2.1	4.9	0.3	I	0.7	0.2	5.9	ı
C.V.	I	4.0	1.5	6.5	2.3	2.9	17.3	7.8	4.8	13.0	4.3	ı	1.4	3.1	6.9	I
Trans formation	1	AT	AT	AT	АТ	АТ	AT	АТ	АТ	АТ	ST	ı	АТ	ST	АТ	ı
Screening		N	N	N	N	Α	Α	Α	Z	Α	Z	ı	Z	Z	А	ı
		c	-	E	•	c	(C		د ا	-		-	٠ ٤	•	

Table 11.2: Evaluation of fungicides against leaf blast disease of rice, *Kharif*, 2023

(Figures in the parenthesis indicate transformed means; AT-Arc sine transformation; ST- Square root transformation; N/A- natural or artificial screening)

ICAR-IIRR - AICRPR - Annual Progress Report 2023, Vol.2, Plant Pathology

		-								r	-	
	Mean	4431	4448	4847	4590	4497	4569	4799	3521		'	ı
	REW	3527	3610	3805	3842	3912	4028	4192	3364	3785	115.7	1.7
	RCI	5208	5720	6050	4965	5503	5599	5868	4618	5442	857.2	10.6
	PNP	3512	3769	4197	4087	3712	3893	4311	2164	3706	195.9	3.6
vield	NWG	8136	7302	7551	7701	7558	7374	8490	6720	7604	845.2	7.5
orain v	MND	4761	4564	6765	5813	5120	5396	5732	2490	5080	254.8	2.8
af blast	LNV	3933	4068	4170	4275	4038	4065	4268	3738	4069	86.3	1.4
Le	JDP	4850	5018	5453	5113	5270	5260	4908	3453	4915	384.4	5.3
	IIRR	4970	4910	4907	4897	4940	4907	4833	3960	4790	72.1	0.9
	HZB	2666	2924	3306	3037	2410	2461	2511	2094	2676	55.1	1.4
	GGT	2263	2175	2025	1975	2138	2413	2663	1844	2187	58.3	1.8
	CBT	4919	4865	5091	4789	4869	4868	5019	4284	4838	144.2	2.0
	Dosage/L	3.0 g/l	1.5 g/l	3.5 ml/l	2 ml/l	1.5 ml/l	2 ml/l	0.4 g/l		ı		ı
	Treatments	T1 - Mancozeb 50% + Thiophanate methyl 25% WG	T2 - Kasugamycin 5% + copper oxychloride 45% WP	T3 - Azoxysrobin 5.1% + Tebuconazole 9.1% + Prochloraz 18.2% EC	T4 - Fenoxanil 5% + Isoprothiolane 30% EC	T5 - Azoxystrobin 14% + Epoxiconazole 9% SC	T6 - Picoxystrobin 7.05% + Propiconazole 11.7% SC	T7 - Tebuconazole 50% + Trifloxystrobin 25% w/w WG	T8 - Untreated control	General Mean	LSD ((a) 5% ($P=0.05$)	C.V.

Table 11.3: Effect of fungicides on grain vield with respect to rice leaf blast. *Kharif*-2023

ICAR-IIRR - AICRPR – Annual Progress Report 2023, Vol.2, Plant Pathology

	DS	LNV	10.5 (18.8)	9.3 (17.6)	7.3 (15.5)	6.3 (14.4)	10.3 (18.5)	9.3 (17.6)	4.3 (11.8)	11.8 (20)	8.6	1.1	4.6	ST	Z
		Mean	19.5	18.2	13.0	15.9	16.4	15.5	14.0	35.6	I	I	I		I
		RCI	14.3 (22.7)	8 (16.3)	4.5 (12.1)	18.3 (25)	14.5 (22.1)	10.8 (18.8)	7 (15.2)	23.3 (28.5)	12.6	5.2	17.3	АТ	Z
		RNR	8.1 (2.8)	6.6 (2.7)	8.9 (3)	10.3 (3.3)	6.9 (2.7)	8.7 (3)	4.7 (2.3)	18.2 (4.3)	9.1	0.8	16.5	АТ	Ν
		PNP	21.9 (27.8)	22.4 (28.1)	14.5 (22.2)	16.4 (23.5)	18.4 (25.3)	17.7 (24.8)	12.1 (20.3)	41.2 (39.9)	20.6	2.9	7.3	АТ	Z
	ncidence	MTU	13 (3.7)	9.1 (3)	7.9 (2.7)	8.9 (3.1)	6.4 (2.7)	9.4 (3.1)	10.4 (3.3)	13.4 (3.7)	9.8	N/A	20.7	ST	Ν
	disease iı	UND	10.5 (3.3)	11.4 (3.5)	8.2 (3)	8 (2.9)	10.9 (3.4)	8.9 (3)	11.3 (3.5)	35 (5.9)	13.0	0.6	9.8	АТ	N
	ck blast o	ANT	10.5 (3.3)	9.3 (3.1)	7.3 (2.8)	6.3(2.6)	10.3 (3.3)	9.3 (3.1)	4.3 (2.2)	11.3 (3.5)	8.6	0.2	4.0	$\mathbf{T}\mathbf{S}$	Ν
- (fammer	Neo	KUL	33.8 (35.4)	36.4 (37.1)	16.5 (23.9)	21.6 (27.6)	23.8 (29.1)	30 (33.1)	27.2 (31.3)	51 (45.5)	30.0	2.8	5.8	АТ	Z
		JDP	35 (36.2)	26.3 (30.7)	19.4 (26)	28.1 (32)	25 (29.9)	22.5 (28.2)	29.4 (32.6)	64.4 (53.4)	31.3	4.9	9.6	АТ	Ν
		GGT	23.9 (29.2)	30.7 (32.5)	25.6 (31.9)	28.8 (30.8)	25 (32.4)	21.9 (29.9)	18.1 (28.4)	60.3 (26.4)	29.3	2.0	4.4	АТ	Ν
		CHP	23.9 (29.1)	21.4 (27.5)	17.5 (24.6)	12.8 (20.6)	22.8 (28.3)	15.8 (23.3)	15.3 (22.9)	37.5 (37.7)	20.9	4.2	10.5	АТ	Ν
	Dococol	TIDABOON	3.0 g/l	1.5 g/l	3.5 ml/l	2 ml/l	1.5 ml/l	2 ml/liter	0.4 g/l	ı	I	I	I	I	I
A ANTA STINT TO TRAINING OF ALITE ADDIT	Two atmosts	11 CAULCHUS	T1 - Mancozeb 50% + Thiophanate methyl 25% WG	T2 - Kasugamycin 5% + copper oxychloride 45% WP	T3 - Azoxysrobin 5.1% + Tebuconazole 9.1% + Prochloraz 18.2% EC	T4 - Fenoxanil 5% + Isoprothiolane 30% EC	T5 - Azoxystrobin 14% + Epoxiconazole 9% SC	T6 - Picoxystrobin 7.05% + Propiconazole 11.7% SC	T7 - Tebuconazole 50% + Trifloxystrobin 25% w/w WG	T8 - Untreated control	General Mean	LSD @ 5% (P=0.05)	C.V.	Transformation	Screening

Table 11.4: Evaluation of funoicides against neck blast disease of rice. *Kharif* 2023

(Figures in the parenthesis indicate transformed means; AT-Arc sine transformation; ST- Square root transformation; N/A- natural or artificial screening)

ICAR-IIRR - AICRPR - Annual Progress Report 2023, Vol.2, Plant Pathology

					Neck	blast grai	n vield			
Treatments	Dosage/L	CHP	GGT	dOL	KUL		MND	PNP	RCI	Mean
T1 - Mancozeb 50% + Thiophanate methyl 25% WG	3.0 g/l	5803	2263	4850	4102	3933	4761	3512	5208	4304
T2 - Kasugamycin 5% + copper oxychloride 45% WP	1.5 g/l	5645	2175	5018	4042	4068	4564	3769	5720	4375
T3 - Azoxysrobin 5.1% + Tebuconazole 9.1% + Prochloraz 18.2% EC	3.5 m/l	6218	2025	5453	4601	4170	6765	4197	6050	4935
T4 - Fenoxanil 5% + Isoprothiolane 30% EC	2 ml/l	6683	1975	5113	4500	4275	5813	4087	4965	4676
T5 - Azoxystrobin 14% + Epoxiconazole 9% SC	1.5 ml/l	6310	2138	5270	4435	4038	5120	3712	5503	4566
T6 - Picoxystrobin 7.05% + Propiconazole 11.7% SC	2 ml/l	6898	2413	5260	4206	4065	5396	3893	5599	4716
T7 - Tebuconazole 50% + Trifloxystrobin 25% w/w WG	0.4 g/l	6443	2663	4908	4298	4268	5732	4311	5868	4811
T8 - Untreated control	-	4710	1844	3453	3391	3738	2490	2164	4618	3301
General Mean	-	6088	2187	4915	4197	4069	5080	3706	5442	I
LSD (a) 5% (P=0.05)	-	556.6	58.3	384.4	274.6	86.3	254.8	195.9	857.2	
C.V.	-	6.2	1.8	5.3	4.4	1.4	2.8	3.6	10.6	I

Table 11.5: Effect of fungicides on grain yield with respect to rice neck blast, Kharif-2023

Sheath blight: Commercially available combination fungicides were evaluated against sheath blight disease at 15 hot spot locations. The experiment was conducted under artificial inoculation at all the test locations except Moncompu and Pattambi. Both disease severity and incidence was observed at seven locations viz., Bankura, Cuttack, Faizabad (Masodha), Ludhiana, Mancompu, Maruteru, and Pantnagar. Only disease severity was observed at seven locations viz., Chinsurah, Chiplima, Gangavathi, IIRR, Mandya, Pattambi, Moncompu and Raipur. Only disease incidence was observed at Rajendranagar. Two sprays of fungicidal treatments were given at all the centres except Moncompu where one spray was given. Severity in check plots was varied between 42.3% (Raipur) and 86.3% (Gangavathi). Disease severity on untreated plot was very high (>50%) at Gangavathi (86.3%), Ludhiana (78.3%), Masodha (74.5%), IIRR (70.5%), Chinsurah (70.3%), Pantnagar (70.1%), Cuttack (69.6%), Pattambi (69.4%), Chiplima (60.8%), Moncompu (60.8%) and Bankura (60%), Maruteru (59.9%), Mandya (52.6%); and high (30-50%) at Raipur (42.3%). Disease incidence was varied between 39.2% (Moncompu) and 100% (Ludhiana). It was very high at Ludhiana (100%), Bankura (98.8%), Pantnagar (92%), Rajendranagar (92%), Maruteru (89.3%) and Cuttack (78.7%), and Masodha (52.6%).

Figure 11.1C: Fungicides against sheath blight, K-2023

All fungicidal applications significantly reduced the disease compared to control (DS: 66.1%; DI: 80.3%) across the test locations. The combination fungicide azoxysrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l) maximum reduced the severity at five locations *viz.*, Bankura (18.7%), Cuttack (16.4%), Pattambi (22.4%), Moncompu (5.3%) and Raipur (12.6%) and on par with other best treatment at five other locations viz., Chiplima, Gangavathi, IIRR, Mandya, and Maruteru. On the other side, treatments *viz.*, Azoxystrobin 14 % + Epoxiconazole 9 % SC (1.5 ml/l) maximum reduced the severity at four locations viz., Maruteru (15%), Chiplima (21.1%), IIRR (29.8%) and Masodha (21.1%) and on par with other fungicides at two locations viz., Cuttack and Moncopmpu. Another treatment tebuconazole 50%+ trifloxystrobin 25% w/w WG (0.4g/l) also maximum reduced severity at four locations namely, Gangavathi (27.4%), Ludhiana (13.3%), Mandya (10.4%) and Pant Nagar (32.3%). The mean disease severity (23.8%) was low at azoxysrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l) treatment followed by azoxystrobin 14 % + epoxiconazole 9.% SC (1.5 ml/l) (26.3%) (Fig. 11.1C and Table 11.6).

Among all the fungicidal treatments tricyclazole 18 % + mancozeb 62 % WP (2.5g/l) showed highest mean disease severity (41.8%) compared to other treatments followed by zineb 68% + hexaconazole 4% WP (2.5g/l). Combination fungicide azoxysrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l) significantly reduced the intensity at three locations viz., Bankura (66.9%), Cuttack (14.5%), and Moncompu (5.9%) followed by Azoxystrobin 14 % + Epoxiconazole 9 % SC (1.5 ml/l) at two locations Masodha and Marateru, and Tebuconazole 50%+ Trifloxystrobin 25% w/w WG (0.4 g/l) at Pantnagar and Rajendranagar. The average disease incidence was very low (42.5%) at azoxysrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l) treatment compared to other commercial products (Fig. 11.1C and Table 11.7).

Grain yield in the experimental plots recorded at all the test locations. It was observed that grain yield was more in fungicide treated plots compared to check plot (4113 Kg/ha). Highest yield was recorded in the plots where azoxysrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l) sprayed (5737 Kg/ha) plot followed by azoxystrobin 14 % + epoxiconazole 9 % SC (1.5 ml/l) sprayed plot (5464 Kg/ha) (Table 11.8).

Brown spot: Test fungicidal products were evaluated against brown spot at eight different locations. Both disease incidence and severity was recorded at Bankura, and remaing seven centres only disease severity was recorded. Disease severity in control plot was very high (>50%) at Pattambi (76.1%), Bankura (68%), Hazaribagh (57.9%), Aduthurai (57.8%), Chatha (52.5%), Sabour (51.6%), and high at Varanasi (49.8%); and moderate at Pusa (29%). The very high disease incidence (100%) was noticed at Bankura. Bio-efficacy of the fungicides was tested under artificial inoculation of brown spot pathogen at three centres viz., Bankura, Hazaribagh, and Pusa. All eight combi-products were performed better in reducing the brown spot at all the centres compared to untreated control.

Figure 11.1D: Fungicides against Brown spot, K-2023

Among all the treatment, combination fungicide azoxysrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l) was significantly reduced the disease severity at six locations viz., Aduthurai (27.4%), Bankura (18.4%), Pattambi (59.4%), Pusa (11.3%), Sabour (16.7%) and Varanasi (16.9%). The same treatment (T3) showed minimum average disease severity (26.5%) from all eight-test locations. Besides, treatments viz., tebuconazole 50%+ trifloxystrobin 25% w/w WG (0.4 g/l) showed less disease severity (14.5%) at Chatha and

mancozeb 50% + thiophanate methyl 25% WG (3.0 g/l) showed less disease severity (27.3%) at Hazaribagh. The low disease incidence (72.1%) was observed from the treatment azoxysrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l) at Bankura (Fig. 11.1D and Table 11.9). Yield data was recorded at all eight centres. Fungicide sprayed plots showed significantly higher yield compared to control plot (3158 Kg/ha). Highest yield (4447 Kg/ha) was obtained from plots where azoxysrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l) sprayed (Table 11.10).

Sheath rot: The fungicidal molecules were tested against sheath rot disease at four locations namely Aduthurai, Navasari, Nawagam and Titabar. Both disease severity and incidence was recorded at Navasari and Nawagam. Only disease was observed at Aduthurai and Titabar. The test fungicidal products were evaluated against the disease under natural infestation at most of the locations except Titabar where disease was augmented through artificial inoculation. Disease severity in check plots was high (30-50%) at both Navasari (35.7%) and Nawagam (36%). Incidence in check plots was varied from 83.6% to 43%. Incidence was very high at Nawagam (83.6%), Titabar (76.2%) and Aduthurai (64.2%); high at Navasari (43.0%). In all the centres uniformly two sprays of fungicides. All the combination fungicides were significantly reduced the disease incidence (66.8%) and severity (35.8%) when compared to check.

Figure 11.1E: Fungicides against sheath rot, K-2023

The combination fungicide *ie.*, azoxysrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l) significantly reduced the sheath rot severity at Nawagam (20.6%) and incidence at Titabar (15.1%). The same treatment (T3) showed minimum average disease severity of 17.5% and minimum average disease incidence of 32.5% from the test locations. On the other side, treatment tebuconazole 50%+ trifloxystrobin 25% w/w WG (0.4 g/l) significantly reduced disease severity at Navasari (20.6%) and disease incidence at two locations *viz.*, Aduthurai (21.4%) and Nawagam (54.2%). The same treatment (T7) showed minimum average disease severity of 18.3% and minimum average disease incidence of 31.3% from the test locations. However, these two test products *viz.*, azoxystrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l) and tebuconazole 50%+ trifloxystrobin 25% w/w WG (0.4 g/l) was found better in reducing the disease incidence as well as severity and on par with each other (Fig.11.1E and Table 11.11). The mean yield across the

experimental locations in check plot was 4766 Kg/ha. Among the treatments, tebuconazole 50%+ trifloxystrobin 25% w/w WG (0.4 g/l) yielded more (5882 Kg/ha) when compare to other treatments (Table 11.11).

Glume/grain discolouration: The fungicides were evaluated against glume discoloration at Mancompu and Rajendranagar. Disease incidence at control plot was moderate (25.3%) at Rajendranagar. At Mancompu very low level of panicle (25.8%) and spikelet (13.5%) incidence were recorded in the control plot. All the fungicides reduced the grain dicoloration incidence compared to check. Treatment (T3) azoxysrobin 5.1% + tebuconazole 9.1% + prochloraz 18.2% EC (3.5 ml/l) showed less mean disease incidence (11%) at both the centres when compared over other treatments. However the same treatment (T3) produced highest grain yield (6104 Kg/ha) compared to all other treatments and check (4555 Kg/ha) (Table 11.12).

Stem rot: The chemicals were evaluated against stem rot disease through natural incidence at Titabar and recorded the disease incidence. All seven fungicidal treatments were reduced the disease incidence compare to control. Among all treatment, azoxystrobin 14 % + epoxiconazole 9 % SC (1.5 ml/l) treatment reduced the disease incidence at 8.8% and produced the highest yield (4595 Kg/ha) (Table 11.12).

ICAR-IIRR - AICRPR - Annual Progress Report 2023, Vol.2, Plant Pathology

)						Shea	ath blig	ht dise	ase sev	erity					
lreatment	Dosage/L	BNK	CHN	CHP	CTK	GNV	IIRR	LDN	MND	PTB	MSD	MTU	MNC	PNT	RPR	Mean
T1 - Mancozeb 50% + Thiophanate methyl 25% WG	3.0 g/l	35.6 (36.6)	23.5 (28.9)	27.8 (31.7)	38.2 (38.1)	40.4 (39.4)	37.6 (39.2)	25.3 (30.1)	9.6 (17.9)	44.4 (41.5)	39.4 (38.8)	55.7 (55.6)	21.5 (26.3)	43.8 (41.3)	15.5 (23.0)	32.7
T2 - Kasugamycin 5% + copper oxychloride 45% WP	1.5 g/l	33.2 (35.1)	43.8 (41.3)	35.3 (36.4)	29 (32.4)	46.4 (42.9)	36.7 (39)	45.7 (42.4)	20 (26.2)	49.1 (44.3)	36.6 (37.2)	50.8 (50.8)	34.5 (35.9)	48.0 (43.8)	24.4 (29.5)	38.1
T3 - Azoxysrobin 5.1% + Tebuconazole 9.1% + Prochloraz 18.2% EC	3.5 ml/l	18.7 (25.5)	39.8 (39.0)	21.9 (27.8)	16.4 (23.7)	27.5 (31.6)	30.4 (34.8)	34.0 (35.6)	10.4 (18.6)	22.5 (27.8)	29.1 (32.6)	31.2 (31.1)	5.3 (12.7)	33.9 (35.6)	12.6 (20.7)	23.8
T4 - Fenoxanil 5% + Isoprothiolane 30% EC	2 ml/l	28.9 (32.4)	48.3 (43.9)	34.4 (35.8)	22.6 (28.2)	37.0 (37.4)	33.6 (38.1)	30.8 (33.6)	16.3 (23.6)	45.0 (41.8)	34.6 (36.0)	52.4 (52.3)	31.7 (34.0)	47.1 (43.2)	$ \frac{18.5}{(25.0)} $	34.4
T5 - Azoxystrobin 14% + Epoxiconazole 9% SC	1.5 ml/l	21.4 (27.5)	30.8 (33.6)	21.1 (27.2)	19.8 (26.1)	39.8 (39.0)	29.8 (33.7)	42.8 (40.8)	19.3 (25.3)	35.0 (36.1)	21.1 (27.2)	15.0 (15.0)	13.3 (20.6)	35.6 (36.6)	23.0 (28.5)	26.3
T6 - Picoxystrobin 7.05% + Propiconazole 11.7% SC	2 ml/liter	25.3 (30.1)	42.5 (40.6)	16.7 (23.9)	23.2 (28.6)	47.6 (43.5)	34.1 (40.5)	16.0 (23.5)	14.8 (22.3)	31.7 (34.0)	27.5 (31.5)	41.5 (41.5)	33.9 (35.5)	41.8 (40.3)	12.6 (20.7)	29.2
T7 - Tebuconazole 50% + Trifloxystrobin 25% w/w WG	0.4 g/l	23.7 (29.1)	36 (36.8)	26.1 (30.6)	36.4 (37.0)	27.4 (31.5)	36.8 (41.2)	13.3 (21.3)	10.3 (18.6)	38.8 (38.2)	22.5 (28.3)	43.7 (43.6)	20.3 (26.5)	32.3 (34.6)	20.0 (26.4)	27.7
T8 - Untreated control	I	60.0 (50.7)	70.3 (57.0)	60.8 (51.2)	69.6 (56.5)	86.3 (68.3)	70.5 (67.1)	78.3 (62.4)	52.6 (46.4)	69.4 (56.3)	74.5 (59.6)	59.9 (59.8)	60.8 (51.6)	70.1 (56.8)	42.3 (40.5)	66.1
General Mean	I	30.9	41.8	30.5	31.9	44.1	38.7	35.8	19.2	42.0	35.7	43.8	27.7	44.1	21.1	T
LSD @ 5% (P=0.05)	I	2.4	3.8	4.3	4.5	6.2	2.9	4.0	7.5	14.1	2.7	14.8	12.4	0.9	4.8	I
C.V.	I	4.8	6.4	8.7	9.0	8.3	4.4	6.3	17.0	23.8	5.0	22.8	27.6	1.3	10.2	ı
Transformation	I	AT	AT	АГ	AT	AT	AT	AT	АГ	AT	АT	AT	AT	AT	AT	I
Screening	I	Α	Α	А	А	А	А	А	А	Z	А	A	Z	А	A	I

Table 11.6: Evaluation of fungicides on sheath blight severity of rice, Kharif, 2023

(Figures in the parenthesis indicate transformed means; AT- Arc sine transformation; ST- Square root transformation; N/A- natural or artificial screening)
inder in and the contribution in momental first around			6 maint							
Two of mont	Dogogo			She	ath bligl	nt dis e as	se incide	ence		
псаннен	DUS age/L	BNK	CTK	LDN	MSD	MNC	MTU	PNT	RNR	Mean
T1 - Mancozeb 50% + Thiophanate methyl 25% WG	3.0 g/l	89.5 (71.3)	41 (42.9)	68.2 (55.6)	37.4 (37.6)	23 (28.5)	74.1 (60.6)	68.4 (55.7)	68.4 (34.3)	58.7
T2 - Kasugamycin 5% + copper oxychloride 45% WP	1.5 g/l	85.5 (67.6)	29.1 (35.8)	92.4 (74.7)	33.9 (35.5)	28.2 (32.0)	70.5 (58.5)	72.9 (58.6)	72.9 (40.7)	60.7
T3 - Azoxysrobin 5.1% + Tebuconazole 9.1% + Prochloraz 18.2% EC	3.5 ml/l	67.0 (54.9)	14.5 (26.5)	74.1 (59.4)	31.1 (33.8)	5.9 (13.4)	32.5 (34.2)	<i>57.</i> 6 (49.3)	57.6 (26.3)	42.5
T4 - Fenoxanil 5% + Isoprothiolane 30% EC	2 ml/l	853 (67.4)	25 (31.0)	68.5 (55.8)	33.4 (35.2)	27.7 (31.7)	66.1 (55.2)	71.1 (57.4)	71.1 (42.5)	56.0
T5 - Azoxystrobin 14% + Epoxiconazole 9% SC	1.5 ml/l	80.8 (64.0)	16.8 (28.8)	77.1 (61.4)	20.2 (26.6)	12.4 (20.3)	12.9 (19.8)	60.6 (51.0)	60.6 (32.0)	42.7
T6 - Picoxystrobin 7.05% + Propiconazole 11.7% SC	2 ml/l	73.8 (59.3)	24.2 (33.7)	33.2 (35.1)	29.6 (33.2)	30.1 (33.2)	53.6 (47.0)	64.6 (53.4)	64.6 (35.7)	46.7
T7 - Tebuconazole 50% + Trifloxystrobin 25% w/w WG	0.4 g/l	84.3 (66.8)	37.8 (38.8)	42.7 (40.7)	21.4 (27.4)	18.9 (25.5)	56.1 (48.6)	55.7 (48.2)	55.7 (35.5)	46.6
T8 - Untreated control	-	98.8 (86.7)	78.7 (57.7)	100 (90)	52.6 (46.4)	39.2 (37.3)	89.3 (76.2)	92.0 (73.5)	92.0 (46.3)	80.3
General Mean	-	83.1	33.4	69.5	32.4	23.2	56.9	6.7.9	6.7.9	ı
LSD (a) 5% (P=0.05)	ı	5.5	5.9	5.3	2.5	10.6	16.7	1.2	5.5	ı
C.V.	I	5.6	10.9	5.0	4.9	25.9	22.5	1.2	10.1	I
Trans formation	ı	AT	AT	АТ	АГ	AT	АТ	AT	AT	I
Screening	I	Α	A	Α	Υ	Ν	Α	Υ	Ν	ı
		c	Ę	τ		•	111	-	2	.

Table 11.7: Evaluation of fungicides on sheath blight incidence of rice, Kharif, 2023

(Figures in the parenthesis indicate transformed means; AT- Arc sine transformation; ST- Square root transformation; N/A- natural or artificial screening)

	giunce u	וו בומו	11 AILIN 11	601 III	h r r r	1110	n p ni c		muur (n	117-201	3						
							~1	Sheath	blight	grain	yield						
JOSAGE/L BNK CHI	BNK CHI	CHI	7	CHP	CTK	GNV	IIRR	LDN	MND	PTB	MSD	MTU	MNC	PNT	RPR	RNR	Mea
3.0 g/l 5165 5545	5165 5545	5545		5803	3950	5436	3765	6217	4828	3865	3000	5601	5913	5658	8100	5968	5254
1.5 g/l 5288 4028	5288 4028	4028		5645	4060	5215	2885	5883	4489	2985	3025	5701	4735	5108	7650	5844	4836
3.5 ml/l 6110 4433	6110 4433	4433		6218	5170	6259	3700	6011	7450	3800	3300	6399	5935	6160	8833	6272	5737
2 ml/l 5377 3719	5377 3719	3719	l	6683	4450	5108	3363	6250	6541	3463	3088	6092	4538	5119	8083	5960	5189
1.5 ml/l 5833 5181	5833 5181	5181	1	6310	4780	5348	3808	5883	5677	3908	3775	6948	4400	6117	7867	6121	5464
2 ml/liter 5508 4459	5508 4459	4459		6898	4190	5250	3523	6211	5399	3623	3325	6256	3875	5715	8233	5982	5230
0.4 g/l 5615 4575	5615 4575	4575		6443	4040	6234	3663	6606	5732	3763	3713	6231	4625	6286	8083	6100	5447
- 3683 3055	3683 3055	3055	1	4710	3640	4194	3263	5689	3466	3363	2175	4753	2895	4864	7317	4629	4113
- 5322 4374	5322 4374	4374	l	6088	4285	5381	3496	6094	5448	3596	3175	5998	4614	5628	8021	5860	ı
- 151.4 553.9	151.4 553.9	553.9	•	556.6	N/A	638.8	115.7	353.8	716.5	468.6	215.7	740.5	1332.1	139.9	750.0	562.5	1
- 1.9 8.6	1.9 8.6	8.6		6.2	15.8	6.7	4.6	3.3	7.4	8.8	4.6	8.3	19.5	1.4	5.3	6.5	

Table 11.8: Effect of funoicides on orain vield with respect to rice sheath blight *Kharif.*2003

				B	rown sp	ot diseas	se severit	ý			DI
I reaune nus	DOSage/L	ADT	BAN	CHA	HZA	PTB	PSA	SAB	VAR	Mean	BAN
T1 - Mancozeb 50% + Thiophanate methyl		30.2	31.8	31.8	27.3	68.9	23	35.5	38.9		73.8
25% WG	1/g 0.c	(33.3)	(34.3)	(34.2)	(31.4)	(56)	(28.6)	(36.5)	(38.5)	6.00	(59.2)
T2 - Kasugamycin 5% + copper oxychloride	1 5 ~/1	35.7	34.0	36.5	48.4	68.1	16.5	23.4	40.1	0 1 0	80.8
45% WP	1/g C.1	(36.6)	(35.6)	(37.1)	(44)	(55.6)	(23.8)	(28.8)	(39.2)	0./0	(64.1)
T3 - Azoxysrobin 5.1% + Tebuconazole	2 5 ml/1	27.4	18.4	19.8	42	59.4	11.3	16.7	16.9	1	72.2
9.1% + Prochloraz 18.2% EC	1/1111 C.C	(31.5)	(25.3)	(26.3)	(40.3)	(50.5)	(19.5)	(24.1)	(24.2)	C.02	(58.2)
T F	1/1 C	42.2	23.9	37	48.9	75.4	21.3	33.7	34.2	1 00	89.4
14 - renoxanii 370 + Isoprounolane 3070 EC	1/IIII 7	(40.4)	(29.2)	(37.4)	(44.3)	(60.2)	(27.4)	(35.4)	(35.7)	0.66	(71.3)
T5 - Azoxystrobin 14% + Epoxiconazole	1 5 m1/1	31.6	19.5	27.5	49.8	65.6	16	30.9	23.1	32.0	69.8
9% SC		(34)	(26.1)	(31.5)	(44.8)	(54)	(23.5)	(33.7)	(28.7)	0.00	(56.6)
T6 - Picoxystrobin 7.05% + Propiconazole	C 1/1	37.3	23	24.4	46.4	61.1	14.3	30.7	25.6		79.3
11.7% SC	1/1111 7	(37.5)	(28.6)	(29.5)	(42.8)	(51.4)	(22)	(33.6)	(30.3)	2.26	(63.1)
T7 - Tebuconazole 50% + Trifloxystrobin	1/2 V U	26.7	22.0	14.5	48.6	70.8	17.3	41.6	19.1	315	76.6
25% w/w WG	0.4 g/l	(31)	(27.8)	(22.2)	(44.1)	(57.3)	(24.4)	(40.1)	(25.8)	0.20	(61.1)
TQ [Intracted control	ı	57.8	68.0	52.5	57.9	76.1	50	51.6	49.8	55.2	100
		(49.4)	(55.5)	(46.4)	(49.5)	(60.7)	(32.5)	(45.8)	(44.8)	c.cc	(06)
Gene ral M ean	-	36.9	29.8	30.3	48.9	68.1	17.9	32.7	29.8		80.2
LSD @ 5% (P=0.05)	I	4.8	2.9	3.4	1.1	5.1	2.4	2.7	3.5	ı	5.3
C.V.	1	8.8	5.9	6.9	1.7	6.2	6.4	4.4	5.9		5.5
Trans formation	I	AS	\mathbf{V}	AS	AS	$\mathbf{S}\mathbf{V}$	$\mathbf{S}\mathbf{V}$	\mathbf{AS}	AS	ı	AS
Screening		N	Y	Z	Α	N	V	N	N		Α
(Fimmes in the normal hasis indicate transforme	d means. AT_	Arc cina	trancfor	S .uciton	T Conor	a root the	nafarma	tion. NI/A	1041100	or ortific in	-

Table 11.9: Evaluation of fungicides on brown spot of rice, Kharif, 2023

(Figures in the parenthesis indicate transformed means; AI - Arc sine transformation; SI - Square root transformation; N/A - natural or artificial screening)

Twaatmants					Brown	spot gra	uin yield	I		
	Lusagui	ADT	BNK	CHT	HZB	PTB	PSA	SBR	VRN	Mean
1ancozeb 50% + Thiophanate methyl 25%	3.0 g/l	4894	5408	2456	3390	3865	3525	4227	3277	3880
asugamycin 5% + copper oxychloride 45%	1.5 g/l	4702	5305	2329	2700	2985	4150	5367	3148	3836
zoxysrobin 5.1% + Tebuconazole 9.1% + oraz 18.2% EC	3.5 ml/l	4997	6171	2676	3179	3800	4750	6137	3867	4447
enoxanil 5% + Isoprothiolane 30% EC	2 ml/l	4527	5744	2436	2658	3463	3775	4275	3324	3775
zoxystrobin 14% + Epoxiconazole 9% SC	1.5 ml/l	4768	5983	2484	2655	3908	4400	4413	3455	4008
icoxystrobin 7.05% + Propiconazole 11.7%	2 ml/l	4671	5624	2535	2932	3623	4575	4467	3367	3974
ebuconazole 50% + Trifloxystrobin 25%	0.4 g/l	5250	5717	2983	2678	3763	3913	3727	3538	3946
ntreated control	I	4560	3432	2301	2513	3363	3463	2620	3013	3158
General Mean	I	4796	5423	2525	2838	3596	4069	4404	3374	ı
LSD @ 5% (P=0.05)	I	164.4	152.6	74.0	55.7	468.6	218.7	586.8	237.7	ı
C.V.	ı	2.3	1.9	2.0	1.3	8.8	3.6	7.5	4.0	ı

Table 11.10: Effect of fungicides on grain vield with respect to rice brown spot. Kharif-2023

Mean 5546 5229 5796 5455 5608 5562 5882 4766 ī ı ī ı Sheath rot grain yield 4462 4078 3925 4370 4174 4395 3778 NWG TTB 4577 4220 115 8136 7302 7551 7558 7374 6720 7604 (Figures in the parenthesis indicate transformed means; AT-Arc sine transformation; ST- Square root transformation; N/A- natural or artificial screening) 7701 8490 845 ∞ SVN 5078 4986 6173 5530 4006 5302 5224 6028 5392 708 6 ADT 4997 4796 4768 4560 4894 4702 4527 4671 5250 164 Mean 50.6 32.5 36.8 40.042.6 40.4 66.8 31.3 ı i Sheath rot disease incidence 20.0 (26.5) TTB (37.0)(42.9)(22.8)(17.6) (29.1)(25.5)(60.8)36.4 18.846.5 23.8 76.3 30.8 15.1 9.3 2.0 4.2 AT \triangleleft (55.3)NWG (64.7)(66.6)(49.5)(62.2)(61.3)(58.2)(47.4)67.5 54.2 83.6 71.5 57.9 77.0 81.7 78.1 72.2 6.2 7.2 AT Z (36.9)(37.1)(28.5)(34.5)(33.3)(31.3)(33.4)(40.9)SVN 23.0 36.2 36.5 32.2 30.4 32.4 27.2 30.7 43.1 4.5 8.9 AT Z 24.3 (29.4) 29.5 (32.7) (37.7) 40.2 (39.3) 30.5 (33.3) (38.1) (27.4) (53.3) ADT 21.4 38.2 64.3 35.8 10.637.7 5.7 ΑT Z NWG Mean 19.9 27.8 17.5 35.8 24.4 23.3 20.2 18.3 Sheath rot DS (24.2)(26.9)(34.1)(30.9)(31.7)(29.7)(23.4)(36.7)31.6 16.9 20.7 26.7 27.7 16.036.0 25.0 24.7 3.2 P Z 22.12 (27.9) 14.4 (22.1) SVN (28.5)(29.3)(25.7)(23.2)(26.9)(36.6)18.9 22.9 21.8 24.1 20.7 15.7 35.7 2.6 6.5 AT Z Dosage/L 3.5 ml/l 1.5 ml/l 1.5 g/l i 3.0 g/li 2 2 ml/l 2 ml/l 4.0 Thiophanate methyl 25% WG Trifloxystrobin 25% w/w WG copper oxychloride 45% WP T6 - Picoxystrob in 7.05% + **T7** - Tebuconazole 50% + LSD a 5% (P=0.05) **I5** - Azoxystrobin 14% + **I3** - Azoxysrobin 5.1% + Propiconazole 11.7% SC **I2** - Kasugamycin 5% + **Transformation** Isoprothiolane 30% EC **General Mean** T1 - Mancozeb 50% + Epoxiconazole 9% SC T8 - Untreated control Tebuconazole 9.1% +Prochloraz 18.2% EC **Treatments** T4 - Fenoxanil 5% + Screening

Table 11.11: Evaluation of fungicides on sheath rot of rice, Kharif, 2023

	1	1			-						-		-		
1 rot	bar	Yield	4194	4000	4478	4258	4595	4217	4325	3805	4234	132.3	2.1	ı	ı
Stem	Tita	DI	28.3 (31.9)	36 (36.6)	14.8 (22.2)	22.5 (28.2)	8.8 (17)	24.8 (29.6)	18.5 (25.3)	64 (53.2)	27.2	3.2	7.0	AS	Α
	Mean	yield	5940	5290	6104	5249	5261	4929	5363	3762	ı	ı	,	ı	1
	RNR	yield	5968	5844	6272	5960	6121	5982	6100	4629	2860	562.5	6.5	I	N
tion	MNC	Grain	5913	4735	5935	4538	4400	3875	4625	2895	4614	1332.1	19.5	I	Ν
liscolora	Mean	DI	12	12	11	13	12	13	13	22	1	,	,	ı	
Grain 6	RNR	DI	18.8 (4.4)	14.5 (3.9)	10.3 (3.3)	16.5 (4.1)	13.3 (3.7)	17.8 (4.3)	14.8 (3.9)	25.3 (5.1)	16.4	0.6	10.3	\mathbf{ST}	Ν
	MNC	Spikelet	8.6 (3)	8.1 (2.9)	13 (3.7)	11 (3.4)	12.0 (3.5)	9.8 (3.2)	12.0 (3.5)	13.5 (3.7)	11.0	N/A	13.4	ST	Ν
	MNC	Panicle	8.8 (3.1)	12.7 (3.6)	8.5 (3)	11.5 (3.5)	11.9 (3.5)	10.4 (3.3)	13.7 (3.8)	25.8 (5.1)	12.9	0.4	6.9	ST	N
	Dosage/L		3.0 g/l	1.5 g/l	3.5 ml/l	2 ml/l	1.5 ml/l	2 ml/liter	0.4 g/l	ı	1		ı	I	1
	Treatments		T1 - Mancozeb 50% + Thiophanate methyl 25% WG	T2 - Kasugamycin 5% + copper oxychloride 45% WP	T3 - Azoxysrobin 5.1% + Tebuconazole 9.1% + Prochloraz 18.2% EC	T4 - Fenoxanil 5% + Isoprothiolane 30% EC	T5 - Azoxystrobin 14% + Epoxiconazole 9% SC	T6 - Picoxystrobin 7.05% + Propiconazole 11.7% SC	T7 - Tebuconazole 50% + Trifloxystrobin 25% w/w WG	T8 - Untreated control	General Mean	LSD (a) 5% (P=0.05)	C.V.	Transformation	Screening

Table 11.12: Evaluation of fungicides on grain discolouration and stem rot of rice, *Kharif*, 2023

(Figures in the parenthesis indicate transformed means; AT- Arc sine transformation; ST- Square root transformation; N/A- natural or artificial screening)

TRIAL No. 12: EVALUATION OF BIO-CONTROL FORMULATIONS AGAINST FUNGAL DISEASES

Integrated disease management (IDM) trials were initiated with the identification and characterization of an efficient strain of *Trichoderma asperellum viz.*, *T. asperellum* Strain TAIK1 by ICAR-IIRR. The strain has been characterised, whole genome sequenced and tested both on farm and in station trials over a period of 4 years to establish its plant growth capabilities and biocontrol efficiency against major pathogens of rice. With the objective of studying the efficiency of two formulations of the strain viz., a liquid and solid bio formulation in different rice growing regions of the country, the formulations were tested against naturally occurring diseases of rice in about seven centres.

The experiment was conducted with the following 8 different treatments *viz.*, T1=Seed treatment followed by seedling dip @ 10 g/l of solid Formulation, T2= Seed treatment followed by seedling dip @ 10 g/l of liquid Formulation, T3= T1 followed by foliar Spray @ 5g/l of solid Formulation, T4=T2 followed by foliar Spray @ 5g/l of liquid Formulation, T5=T1 followed by fungicide for the respective disease, T6=T2 followed by fungicide for the respective disease and T8=Control (No treatment). the respective fungicides for each disease is as follows, for sheath blight diseases Hexaconazole @ 2ml/l at tillering stage, for neck blast disease isoprothiolane @1.5 ml/l at panicle emergence and for false smut disease propiconazole @[1ml/l] at booting stage was recommended in this experiment.

This trial was proposed in 10 centers and results were obtained from seven centres, 5 centres viz., Maruteru, Moncompu, Navsari, Pantnagar and IIRR reporting on sheath blight disease; false smut, sheath rot and neck blast from Karaikal, leaf blast from Rewa and brown spot from Maruteru. Trials were not conducted at Gudalur and Hazaribagh. Results obtained from different centres are discussed below.

Sheath blight: Among the different centres that has reported sheath blight percent disease severity (DS), Pantnagar has reported the highest DS of 97.12% followed by Varanasi at 69.60% in the untreated plots (Control). Among the different formulations tested viz., the liquid formulation was found to be better than the solid formulation. Similarly, the combination of bioagent formulation and fungicides were providing higher percent disease control and increased plant yield when compared to the fungicide treatment alone.

Among all the treatments and across the centres, treatment T6 = Seed treatment followed by seedling dip @ 10 g/l of liquid Formulation+ fungicide for the respective disease (21.54%) was the most effective in controlling the disease. Treated plants (T6) had less disease as compared to the all the treatments tested, followed by the treatment T5 (24.11%) (Table 12.1 to 12.6). In case of biocontrol formulations alone, the treatment T4 is the best in controlling the disease (30.81%). For effective control of sheath blight disease, a combination of biocontrol seed treatment and fungicide spray, such as hexaconazole, is necessary. Notably, treatment T6 demonstrated superior performance in disease reduction and yield enhancement, particularly evident in plant growth parameters like increased tiller count, shoot and root length, and 1000-grain weight. The biocontrol agent exhibits the greater ability to enhance plant growth characteristics by stimulating host mechanisms. Since *R. solani* is a soil-borne pathogen, seed treatment with the biocontrol agent prevents the initial establishment of the pathogen during the seedling stage. Among the all the treatments applied for the management of sheath blight disease, Moncompu reported the highest percentage control over the disease (DC) viz., 93.36% followed by IIRR (90.54) when applied with the liquid formulation of the bioagent as seed treatment followed by seedling dip @ 5g/l followed by foliar spray of Hexaconazole @ 2ml/l at tillering stage (T6). With respect to plant yield, Moncompu reported the highest percent increase in grain yield over control (125%) with treatment T6 followed by the plants treated with the treatment T5 (Table 12.5).

 TABLE 12.1: Evaluation of bio control formulations against Sheath Blight at Maruteru and Moncompu

					Sł	neath blig	ght			
			Maru	ıteru				Moncomp	u	
S.No	Treatments	DS (%)	% Decrease over control (DS)	Grain yield (Kg/ha)	% Increase in Grain Yield	DI (%)	DS (%)	% Decrease over control (DS)	Grain yield (Kg/ha)	% Increase in Grain Yield
T1	ST + SD @ (10 g/l) (Solid Formulation)	39.59 (59.00)	23.95	4057	6.10	44.95 (42.09)	48.43 (44.08)	37.40	4300	44.98
T2	ST + SD @ (10 g/l) Liquid Formulation)	43.82 (41.43)	15.83	4491	17.43	48.01 (43.84)	56.27 (48.58)	27.27	4433	49.46
Т3	T1+ Foliar Spray @ 5g/l (Solid Formulation)	46.11 (42.75)	11.43	4595	20.16	38.58 (38.39)	34.77 (36.12)	55.06	4016	35.40
T4	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	45.33 (42.30)	12.93	4569	19.47	12.09 (20.34)	12.17 (20.41)	84.27	4383	47.77
Т5	T1+ Fungicide for the respective disease	35.22 (36.39)	32.35	4641	21.36	6.86 (15.17)	5.87 (14.01)	92.42	6083	105.09
T6	T2+ Fungicide for the respective disease	35.21 (36.38)	32.37	4681	22.40	5.16 (13.13)	5.13 (13.09)	93.36	6700	125.89
Т7	Fungicide for the respective disease	26.29 (30.83)	49.50	4781	25.04	18.81 (25.70)	22.53 (28.33)	70.87	5716	92.72
Т8	T8=Control	52.06 (46.16)		3824		70.81 (57.27)	77.37 (31.57)		2966	
	C.D.	10.84		N/A		11.64	8.78		385.36	
	SE(m)	3.66		219.6		3.80	2.87		125.83	
	SE(d)	5.18		310.6		5.37	4.05		177.95	
	C.V.	18.10		9.86		21.47	15.14		4.52	

					Sheath	blight			
S.No	Treatments	DS (%)	% Decrease over control (DS)	Root length	Shoot length	No of tillers	1000 grain weight	Grain yield (Kg/ha)	% Increase in Grain Yield
T1	ST + SD @ (10 g/l) (Solid Formulation)	30.97 (33.80)	28.03	16.20	86.33	9.52	20.19	4779	22.51
T2	ST + SD @ (10 g/l) Liquid Formulation)	29.47 (32.87)	31.51	17.67	90.67	10.27	20.60	4963	27.22
T3	T1+ Foliar Spray @ 5g/l (Solid Formulation)	26.17 (30.76)	39.18	18.30	94.00	10.55	21.19	5065	29.84
T4	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	24.23 (29.48)	43.69	18.94	95.67	11.03	23.03	5249	34.56
T5	T1+ Fungicide for the respective disease	16.80 (24.19)	60.96	21.33	100.33	12.97	26.77	5821	49.22
T6	T2+ Fungicide for the respective disease	15.40 (23.10)	64.21	23.03	103.00	13.67	28.13	6127	57.06
Τ7	Fungicide for the respective disease	20.83 (27.14)	51.59	19.27	98.67	12.27	25.13	5372	37.71
Т8	T8=Control	43.03 (40.98)		14.40	79.33	7.93	18.10	3901	
	C.D.	4.01		4.89	9.52	2.00	3.21	731.63	
	SE(m)	1.31		1.60	3.11	0.65	1.04	238.89	
	SE(d)	1.85		2.25	4.39	0.92	1.48	337.84	
	C.V.	8.77		14.84	5.76	10.28	7.93	8.01	

TABLE 12.2: Evaluation of bio control formulations against Sheath Blight at Navasari

					Shea	th bligh	nt			
S.No	Treatments	DI (%)	DS (%)	% Decrease over control (DS)	Root length	Shoot length	No of tillers	1000 grain weight	Grain yield (Kg/ha)	% Increase in Grain Yield
T1	ST + SD @ (10 g/l) (Solid Formulation)	77.73 (61.82)	50.99 (45.55)	28.12	8.15	117.91	50.67	26.08	5591	14.71
T2	ST + SD @ (10 g/l) Liquid Formulation)	73.72 (59.13)	49.24 (44.54)	30.59	8.40	118.52	53.00	26.54	5715	17.26
Т3	T1+ Foliar Spray @ 5g/l (Solid Formulation)	69.49 (56.45)	45.35 (42.32)	36.06	9.37	119.10	56.67	26.85	6044	24.00
Т4	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	65.78 (54.17)	42.69 (40.78)	39.82	19.60	119.38	58.00	27.00	6062	24.37
Т5	T1+ Fungicide for the respective disease	63.31 (52.70)	40.60 (39.56)	42.77	9.64	119.66	59.67	27.10	6176	26.71
T6	T2+ Fungicide for the respective disease	60.85 (51.25)	36.56 (37.19)	48.45	10.09	121.53	63.00	27.58	6266	28.57
Τ7	Fungicide for the respective disease	67.58 (55.27)	44.64 (41.90)	37.07	9.58	118.75	54.67	26.74	5841	19.85
Т8	T8=Control	97.12 (80.20)	70.93 (57.35)		7.71	115.74	49.33	24.98	4874	
	C.D.	1.69	1.62		N/A	1.81	3.42	1.17	147.45	
	SE(m)	0.55	0.53		3.70	0.59	1.11	0.38	48.14	
	SE(d)	0.78	0.75		5.23	0.83	1.57	0.54	68.08	
	C.V.	1.33	1.93		62.15	0.86	3.47	2.51	1.43	

TABLE 12.3: Ev	aluation of bio	control formulations	against Sheath	Blight at Pantnagar
			0	0

				Sh	eath blig	ght		
S.No	Treatments	DS (%)	% Decrease over control (DS)	Root length	Shoot length	1000 grain weight	Grain yield (Kg/ha)	% Increase in Grain Yield
T1	ST + SD @ (10 g/l) (Solid Formulation)	18.30 (25.31)	67.61	45.50	81.59	18.59	5919	15.55
T2	ST + SD @ (10 g/l) Liquid Formulation)	17.64 (24.82)	68.77	49.75	81.64	16.87	6028	17.69
Т3	T1+ Foliar Spray @ 5g/l (Solid Formulation)	12.40 (20.61)	78.05	54.78	91.87	19.35	6540	27.68
T4	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	10.90 (19.27)	80.70	54.93	66.60	21.20	6405	25.03
T5	T1+ Fungicide for the respective disease	6.51 (14.77)	88.48	34.91	72.60	15.84	5432	6.04
Т6	T2+ Fungicide for the respective disease	5.34 (13.36)	90.54	32.35	73.25	15.48	5838	13.98
Τ7	Fungicide for the respective disease	11.49 (19.80)	79.66	34.65	66.13	13.55	5371	4.86
Т8	T8=Control	56.48 (48.71)		32.33	82.61	12.55	5122	
	C.D.	0.17		1.19	1.38	0.488	14.593	
	SE(m)	0.06		0.39	0.45	0.159	4.765	
	SE(d)	0.081		0.55	0.64	0.225	6.739	
	C.V.	0.567		1.59	1.01	1.655	0.142	

TABLE 12.4: Evaluation of bio control formulations against Sheath Blight at IIRR, Hyderabad

~ ~ ~	_		Sheath bl	ight	
S.No	Treatments	DS (%)	% Decrease over control (DS)	Grain Yield	% Increase in Grain Yield
Т1	ST + SD @ (10 g/l) (Solid	60.23	13.46	3289	13 45
11	Formulation)	(50.88)	15.10	5207	13.15
Т2	ST + SD @ (10 g/l) Liquid	56.70	18 53	3734	28.80
12	Formulation)	(48.83)	10.00	5751	20.00
тз	T1+ Foliar Spray @ 5g/l (Solid	51.47	26.05	3697	27 53
15	Formulation)	(45.82)	20.05	5077	21.55
Т4	T2 + Foliar Spray @ 5g/l (Liquid	43.60	37 36	3971	36 98
11	Formulation)	(41.31)	51.50	5771	50.70
Т5	T1+ Fungicide for the respective	31.73	54 41	4838	66.89
10	disease	(34.27)	51.11	1050	00.09
Тб	T2+ Fungicide for the respective	23.67	65 99	4876	68 20
10	disease	(29.10)	00.77	1070	00.20
Т7	Fungicide for the respective disease	30.93	55 56	4472	54.26
17	Tungletide for the respective discuse	(33.78)	55.50	7772	54.20
Т8	T8=Control	69.60		2899	
10		(56.52)		2077	
	C.D.	5.02		459.54	
	SE(m)	1.639		150.05	
	SE(d)	2.318		212.20	
	C.V.	6.172		6.543	

Table 12.5: Evaluation of	f bio control formulations	against sheath blight a	t Varanasi
	bio control for mulations	agamst sneath onght a	t varanasi

	masi	% Increase in Grain Yield	13.45	28.80	27.53	36.98	66.89	68.20	54.26
	Vara	% Decrease over control (DC)	13.46	18.53	26.05	37.36	54.41	65.99	55.56
	ßR	% Increase in Grain Yield	15.55	17.69	27.68	25.03	6.04	13.98	4.86
	Ħ	% Decrease over control (DC)	67.61	68.77	78.05	80.70	88.48	90.54	79.66
	lagar	% Increase in Grain Yield	14.71	17.26	24.00	24.37	26.71	28.57	19.85
	Pantr	% Decrease over control (DC)	28.12	30.59	36.06	39.82	42.77	48.45	37.07
	sari	% Increase in Grain Yield	22.51	27.22	29.84	34.56	49.22	57.06	37.71
IV atti D IIği	Nay	% Decrease over control (DC)	28.03	31.51	39.18	43.69	60.96	64.21	51.59
againstructure	nduıo	% Increase in Grain Yield	44.98	49.46	35.40	47.77	105.09	125.89	92.72
IIIniauou	Mone	% Decrease over control (DC) 37.40		27.27	55.06	84.27	92.42	93.36	70.87
	iteru	% Increase in Grain Yield	% Increase in Grain Yield 6.10		20.16	19.47	21.36	22.40	25.04
	Maru	% Decrease over control (DC)	23.95	15.83	11.43	12.93	32.35	32.37	49.50
TZ. Companyan		Treatments	ST + SD @ (10 g/l) (Solid Formulation)	ST + SD @ (10 g/l) Liquid Formulation)	T1+ Foliar Spray @ 5g/l (Solid Formulation)	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	T1+ Fungicide for the respective disease	T2+ Fungicide for the respective disease	Fungicide
Tabl		S.No	T1	T2	T3	T4	T5	T6	T 7

Table 12.5: Comparison of the effect of bio formulations against Sheath Blight in different centres

T.	Treatment		Sł	neath blight	diseases sev	erity ()		
No.	Treatment	Maruteru	Moncompu	Navasari	Pantnagar	Varanasi	IIRR	Mean
T1	ST + SD @ (10 g/l) (Solid Formulation)	39.59	44.10	30.97	50.99	60.23	18.30	40.70
T2	ST + SD @ (10 g/l) Liquid Formulation)	43.82	48.62	29.47	49.24	56.7	17.64	40.91
Т3	T1+ Foliar Spray @ 5g/l (Solid Formulation)	46.11	36.05	26.17	45.35	51.47	12.40	36.26
T4	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	45.33	18.13	24.23	42.69	43.6	10.90	30.81
Т5	T1+ Fungicide for the respective disease	35.22	13.82	16.8	40.60	31.73	6.51	24.11
T6	T2+ Fungicide for the respective disease	35.21	13.03	15.4	36.56	23.67	5.34	21.54
Т7	Fungicide for the respective disease	26.29	27.98	20.83	44.64	30.93	11.49	27.03
T8	Control	52.06	61.62	43.03	70.93	69.6	56.48	58.95

Table 12.6: Evaluation of bio control formulations against sheath disease severity of rice,*Kharif*, 2023

False smut:

Formulation)

T1+ Foliar Spray @ 5g/l

T3

In the study of IDM package against falsesmut disease using the bioagent *T.asperellum* Strain TAIK1, Karaikal centre reported the highest percent decrease in disease severity over control (95.40%) when the plants were treated with bioagent as seed treatment plus foliar spray @ 5g/l with liquid formulation (T4) followed by the bioagent as seed treatment plus foliar spray @ 5g/l with solid formulation (T3) (85.75% decrease over control). Interestingly, application of the fungicide Propiconazole @ 1ml/l at booting stage, either alone (T7) or in combination with the bioagents (T5 and T6) were not as effective as the bioagent applications. Similarly, the bioagents were found to induce highest percent increase in grain yield over control, T4 and T3 in that order viz., 30.87 % and 25.50% respectively (Table 12.7). This indicates that the bioagent elicits plant growth in rice with highest number of tillers (17.33) and the higher 1000 grain weight (20 g) in the treatment T4 (Table 12.7)

Table		control	ioi muiations	agams	t i aise sii	iut at ixa	anxai			
		False smut								
S.No	Treatments	DS (%)	% Decrease over control (DS)	No of tillers	1000 grain weight	Grain yield (Kg/ha)	% Increase in Grain Yield	DI (%)		
T1	ST + SD @ (10 g/l) (Solid Formulation)	12.60 (20.78)	56.49	12.67	15.00	5810	16.98	13.21 (21.30)		
T2	ST + SD @ (10 g/l) Liquid	11.61	59.90	12.67	16.00	6057	21.95	11.92		

85.75

Table	12 7.	Fyaluation	of bio c	ontrol for	nulations	against	False s mu	t at Karaikal
rable	12./:	Evaluation			nulations	agamst	raise sinu	t at Karaikai

(19.92)

4.13

14.33

17.67

6233

25.50

(20.19)

4.37

					False sm	ut		
S.No	Treatments	DS (%)	% Decrease over control (DS)	No of tillers	1000 grain weight	Grain yield (Kg/ha)	% Increase in Grain Yield	DI (%)
	(Solid Formulation)	(11.72)						(12.07)
T4	T2 + Foliar Spray @ 5g/l (Liquid Formulation)	1.33 (6.63)	95.40	17.33	20.00	6500	30.87	1.81 (7.74)
T5	T1+ Fungicide for the respective disease	6.35 (14.59)	78.06	13.67	16.33	5430	9.33	8.77 (17.22)
Т6	T2+ Fungicide for the respective disease	5.55 (13.62)	80.82	12.33	17.33	5700	14.77	6.24 (14.16)
Т7	Fungicide for the respective disease	16.59 (24.02)	42.73	11.00	16.33	5267	6.04	18.23 (25.27)
Т8	T8=Control	28.96 (32.54)		10.00	15.00	4967		30.50 (33.51)
	C.D.			1.476	1.789	318.41		2.196
SE(m)		0.456		0.482	0.584	103.97		0.717
SE(d)		0.645		0.681	0.826	147.03		1.014
	C.V.	7.259		6.419	6.056	3.13		10.453

NECK BLAST

Karaikal centre has reported the effectivity of *T.asperellum* Strain TAIK1 on neck blast disease, either alone or in combination of the fungicide Isoprothiolane @ 1.5ml/l applied at panicle emergence stage. Highest percent decrease in disease severity over control (88.42%) was achieved when the plants were treated with bioagent as seed treatment followed by foliar spray @ 5g/l with liquid formulation (T4) followed by the treatment bioagent as seed treatment followed by foliar spray @ 5g/l with solid formulation (T3). Further, the application of fungicide Isoprothiolane @ 1.5ml/l at panicle emergence stage, either alone (T7) or in combination with the bioagents (T5 and T6) were not as effective as the bioagent applications. However, the bioagents were found to induce highest percent increase in grain yield over control T4 and T3 in that order viz., 30.87 % and 25.50% respectively (Table 12.8).

NECK BLAST								
S.No	Treatments	DS (%)	% Decrease over control (DS)	No of tillers	1000 grain weight	Grain yield (Kg/ha)	% Increase in Grain Yield	DI (%)
T1	ST + SD @ (10 g/l) (Solid Formulation)	8.65 (17.09)	65.47	12.67	15.00	5810	16.98	10.29 (18.71)
T2	T2 ST + SD @ (10 g/l) Liquid Formulation)		71.22	12.67	16.00	6057	21.95	8.77 (17.22)
T3 T1+ Foliar Spray @ 5g/l (Solid Formulation)		4.69 (12.50)	81.28	14.33	17.67	6233	25.50	6.38 (14.62)
T4 T2 + Foliar Spray @ 5g/ (Liquid Formulation)		2.90 (9.80)	88.42	17.33	20.00	6500	30.87	4.03 (11.57)
Т5	T1+ Fungicide for the respective disease	9.34 (17.79)	62.70	13.67	16.33	5430	9.33	7.27 (15.64)
Т6	T2+ Fungicide for the respective disease	10.85 (19.23)	56.66	12.33	17.33	5700	14.77	10.97 (19.34)
Т7	Fungicide for the respective disease	15.43 (23.12)	38.37	11.00	16.33	5267	6.04	14.67 (22.51)
Т8	T8=Control	25.04 (30.01)		10.00	15.00	4967		31.85 (34.35)
C.D.		3.027		1.476	1.789	318.41		3.71
	SE(m)			0.482	0.584	103.97		1.21
	SE(d)			0.681	0.826	147.03		1.71
	C.V.	16.282		6.419	6.056	3.13		17.84

SHEATH ROT

Karaikal reported the effectivity of *T.asperellum* Strain TAIK1 in terms of controlling the sheath rot disease and improving the plant growth characteristics. Complete suppression of disease reported as 100% percent decrease in disease severity over control was achieved when the plant was treated with bioagent as seed treatment followed by foliar spray (a) 5g/1 with liquid formulation (T4) followed by the treatment bioagent as seed treatment followed by foliar spray (a) 5g/1 with solid formulation (T3) (93.90% decrease over control). The application of fungicide Hexaconazole either alone (T7) or in combination with the bioagents (T5 and T6) were not as effective as the bioagent applications. Also, the bioagents were found to induce highest percent increase in grain yield over control T4 and T3 in that order viz., 30.87% and 25.50% respectively (Table 12.9).

				SE	IEATH I	ROT		
S.No	Treatments	DS (%)	% Decrease over control (DS)	No of tillers	1000 grain weight	Grain yield (Kg/ha)	% Increase in Grain Yield	DI (%)
T1	ST + SD @ (10 g/l) (Solid Formulation)	2.64 (9.35)	75.85	12.67	15.00	5810	16.98	2.93 (9.86)
T2	ST + SD @ (10 g/l) Liquid Formulation)	2.50 (9.09)	77.13	12.67	16.00	6057	21.95	2.84 (9.70)
T3 T1+ Foliar Spray @ 5g/l (Solid Formulation)		0.67 (4.68)	93.90	14.33	17.67	6233	25.50	0.67 (4.68)
T4 T2 + Foliar Spray @ 5g/l (Liquid Formulation)		0.00 (0.00)	100.00	17.33	20.00	6500	30.87	0.00 (0.00)
Т5	T1+ Fungicide for the respective disease	2.15 (8.43)	80.30	13.67	16.33	5430	9.33	2.25 (8.62)
Т6	T2+ Fungicide for the respective disease	2.11 (8.34)	80.73	12.33	17.33	5700	14.77	2.21 (8.54)
Τ7	Fungicide for the respective disease	4.77 (12.61)	56.40	11.00	16.33	5267	6.04	4.87 (12.75)
Т8	T8=Control	10.93 (19.30)		10.00	15.00	4967		11.82 (20.10)
	C.D.	1.22		1.476	1.789	318.41		1.10
	SE(m)	0.398		0.482	0.584	103.97		0.36
SE(d)		0.562		0.681	0.826	147.03		0.51
	C.V.	21.38		6.419	6.056	3.13		18.07

Table 12.9: Evaluation of bio control formulations against Sheath rot at Karaikal

LEAF BLAST

The effectivity of *T.asperellum* Strain TAIK1 either alone or in combination of the fungicide against the leaf blast disease was reported by the Rewa centre. Results indicated that the treatment T6 viz., seed treatment plus seedling dip (10g/l liquid formulation) and foliar spray of fungicide was the best in controlling the leaf blast disease, suppressing 59% of the disease, when compared to the untreated control (T8) (Table 12.10). This was followed by the treatment T5 (53% decrease over control) and T4 (47% decrease over control). There was a significant variation existed among the treatments for the grain yield, the treatment T7 fungicide alone has given the higher yields when compared to the

remaining treatment combinations. among the biocontrol agent combinations, T5 and T6 are on par in increasing the grain yield of the treated plants viz, 20.33 and 20.52% respectively (Table 12.10).

					Leaf bla	st		
S.No	Treatments	DS (%)	% Decrease over control (DS)	No of tillers	1000 grain weight	Grain yield (Kg/ha)	% Increase in Grain Yield	DI (%)
T1	ST + SD @ (10 g/l) (Solid Formulation)	12.87 (6.36)	13.84	8.80	25.93	4053	15.71	14.33 (6.71)
T2	ST + SD @ (10 g/l) Liquid Formulation)	10.40 (5.72)	30.36	8.83	26.30	4047	15.53	14.10 (6.66)
Т3	T3 T1+ Foliar Spray @ 5g/l (Solid Formulation)		41.29	8.87	27.33	4158	18.71	12.50 (6.27)
T4	T4 T2 + Foliar Spray @ 5g/l (Liquid Formulation)		47.32	8.93	27.67	4182	19.37	10.10 (5.63)
T5	T1+ Fungicide for the respective disease	7.03 (4.70)	52.90	9.77	26.87	4222	20.52	10.03 (5.61)
T6	T2+ Fungicide for the respective disease	6.13 (4.39)	58.93	10.37	27.80	4215	20.33	8.47 (5.16)
Τ7	Fungicide for the respective disease	7.97 (5.00)	46.65	9.83	27.17	4582	30.80	12.65 (6.23)
T8 T8=Control		14.93 (6.85)		8.30	25.27	3503		24.97 (8.86)
C.D.		1.521		0.657	1.117	356.22		1.792
	SE(m)			0.214	0.365	116.31		0.582
SE(d)		0.702		0.303	0.516	164.49		0.823
	C.V.	9.06		4.033	2.36	4.89		7.543

Table 12.10: Evaluation of bio control formulations against Leaf blast at Rewa

(DS – Disease Severity; DI – Disease Incidence; Figures in the parenthesis indicate transformed means; AT- Arc sine transformation)

NECK BLAST

In the study of IDM against Neck blast disease using the bioagent *T.asperellum* Strain TAIK1 and the fungicide Isoprothiolane @1.5ml/l at panicle emergence, there was no significant variation observed among the treatments for the disease incidence (DI) and grain yield. Treatment T7 viz., fungicide alone has better control of neck blast disease (49.36% decrease over control) which is giving a higher grain yield (4781kg/ha) with 25% increase over the untreated control (Table 12.11). The biocontrol and fungicide treatment

combinations T5 (42.65% decrease over control) and T4 (41.80% decrease over control) are on par in controlling the neck blast disease incidence in Maruteru centre (Table 12.11).

Table	12.11: E	valuation	of bio d	control	formula	tions a	against	Neck b	last at	Maru	te ru
Lanc	14.11.1	v aluation	01010	control	Iormuna	tions t	agamse		morau	1 I al u	u i u

		Neck blast							
S.No	Treatments	DI (%)	% Decrease over control (DI)	Grain Yield	% Increase in Grain Yield				
T1	ST + SD @ (10 g/l) (Solid Formulation)	19.41 (26.13)	7.70	4057	6.10				
T2	ST + SD @ (10 g/l) Liquid Formulation)	18.26 (25.29)	13.17	4491	17.43				
Т3	T3 T1+ Foliar Spray @ 5g/l (Solid Formulation)		30.05	4595	20.16				
T4	T4 T2 + Foliar Spray @ 5g/l (Liquid Formulation)		41.80	4569	19.47				
Т5	T1+ Fungicide for the respective disease	12.06 (20.31)	42.65	4641	21.36				
Т6	T2+ Fungicide for the respective disease	12.76 (20.92)	39.32	4681	22.40				
Τ7	Fungicide for the respective disease	10.65 (19.04)	49.36	4781	25.04				
Т8	T8=Control	21.03 (27.28)		3824					
	C.D.	N/A		N/A					
SE(m)		2.639		219.62					
	SE(d)	3.732		310.59					
	C.V.	34.86		9.86					

TRIAL No.13: INTEGRATED PEST MANAGEMENT-SPECIAL TRIAL

The special integrated pest management trial was conducted against rice diseases at five different zones *viz.*, Zone II (Northern zone - Ludhiana, Pantnagar, Kaul); Zone III (Eastern zone - Chiplima, Masodha); Zone V (Central zone – Jagdalpur); Zone VI (Western zone – Nawagam, Navsari) and Zone VII (Southern zone – Aduthurai, Mandya, Gangavathi, Rajendranagar). According to the existence of specific problems of each zone, Integrated Pest Management (IPM) module was designed and tested along with the Farmer Practices (FP). The detailed treatments can be referred from the AICRIP Plant Pathology Technical Programme, 2023. The trial was conducted by the experts from different disciplines viz., Entomology, Pathology and Weed science. With respect to diseases, disease severity was recorded at regular intervals starting from 15 days after transplanting (DAT) onwards to till the maturity of the crop both in the IPM and Farmers practices (FP) adopted fields. Later, Area Under the Disease Progress Curve (AUDPC) was calculated based on the weekly observation on disease severity to know the influence of the various management practices on the disease development. The results of the trail conducted at various locations are presented as below.

Zone -II: (Northern zone - Pantnagar, Kaul and Ludhiana)

Under Northern zone, the trial was conducted at Pantnagar, Kaul and Ludhiana. At Pantnagar, the trial was evaluated for the management of sheath blight, brown spot, bacterial blight and false smut in three different locations. Data was recorded as disease severity for the all the diseases except false smut, wherein the data was recorded as disease incidence. Spraying of specific fungicide (hexaconazole 5% EC) for sheath blight disease effectively reduced the disease progression of (377-317 AUDPC units) when compared to Farmers practices (730 to 670 AUDPC units). Spraying of propiconazole 25% EC at correct stage of the crop effectively reduced the false smut disease incidence (IPM - 22.56 % to 13.63 %) as against farmers practice (20.20% to 22. 56%). Similarly, adoption of IPM practices reduced the disease progress of brown spot and bacterial blight, as compared to the farmer practices. At Kaul the trial was conducted for the management of leaf blast, neck blast, bacterial blight and sheath blight in two different locations. Adoption of IPM practices, significantly reduced the progress of the leaf blast (L1= IPM-116; FP-189, L2= IPM-117; FP-159) and sheath blight (L1= IPM-85; FP-104, L2= IPM-58; FP-105) in terms of AUDPC value as compared to the farmer management practices. In case of neck blast disease there was no much variation between the IPM and Farmer management practices. At Ludhiana, the trial was conducted for the management of sheath blight, brown spot and false smut at one location. Results revealed that, adoption of IPM practices reduced the false smut disease incidence (Table 13.1).

		DI (%)				AU		DI (%)						
	Treat-					Kaul						Ludhiana		
	ment	FS	SHB	BS	BB	LB	NB	BB	SHB	SHB	BS	FS		
L1	IPM	15.90	354	28	0	116	20	12	85	114	152	18.18		
	FP	22.56	728	90	16	189	20	21	104	60	72	20.00		
L2	IPM	13.71	377	28	0	117	10	15	58	-	-			
	FP	20.20	730	91	15	159	15	22	105	-	-			
L3	IPM	13.63	317	29	0	-	-	-	-	-	-			
	FP	21.39	670	94	16	-	-	-	-	-	-			

Table 13.1: AUDPC values based on disease severity (%) of rice diseases at different dates at Zone II (Pantnagar, Ludhiana and Kaul), Kharif - 2023

(L- Location; IPM – Integrated Pest Management Practices; FP- Farmer Practices; LB- Leaf Blast; NB- Neck Blast; BB-Bacterial Blight; BS – Brown spot; SHB- Sheath Blight; DI-Disease Incidence)

Zone III (Eastern zone - Chiplima, Masodha)

Trials were conducted at Chiplima and Masodha. At Chiplima, adoption of IPM Practices like seed treatment with *Trichoderma* @10g/kg and spraying of carbendazim + mancozeb reduced the leaf blast disease progress (IPM- 27; FP- 141) as compared to farmer practices. The diseases *viz.*, neck blast and bacterial blight progress was low in the IPM practices adopted field as compared with the farmer practices (NB = IPM – 177; FP-225, BB = IPM-295, FP-350). Similarly, reduction of false smut incidence (8.0%) was recorded in the IPM practices adopted field as against farmer practices (11.76%). In case of brown spot disease, IPM practice adopted field recorded the AUDPC value of 132 as against 108 in farmer practice adopted field. At Masodha the trial was conducted for the management of leaf blast, neck blast and bacterial blight and the data was recorded in terms of disease severity. Significant reduction in the disease development of leaf blast, neck blast and bacterial blight and the data was recorded the disease severity of leaf blast (0) as compared to farmer practices (25.98%). With respect to neck blast and bacterial blight, the disease severity was reduced from 37.25% to 16.36% and from 36.58 % to 11.11% respectively (Table 13.2).

Table 13.2: AUDPC values	based on disease sever	ty (%) of rice	diseases recorded at
different dates at Chiplima	and Masodha, Kharif-2	023	

			(Chiplin	na			Masodh	a
			AUD	PC			Di	sease Sever	ity (%)
	Treatment	LB	NB	BS	BB	FS (DI %)	LB	NB	BB
L1	IPM	27	177	132	295	8.0	0	16.36	11.11
	FP	141	225	108	350	11.76	25.98	37.25	36.58

(L- Location; IPM - Integrated Pest Management Practices; FP- Farmer Practices; LB- Leaf Blast; NB- Neck Blast; BB-Bacterial blight; DI-Disease Incidence)

Zone VI (Western zone - Nawagam, Navsari)

Under this zone, the trial was conducted at Nawagam at 3 locations for the management of sheath rot. At all the three locations, spraying of carbendazim 12% + mancozeb 63 % effectively reduced the disease progress as compared to farmer practices, wherein no fungicide spray was taken up. At Navsari, the trial was conducted at one location on diseases viz., sheath blight and brown spot. In the IPM field, application of hexaconazole 5 EC (2 ml/lit) at 60 DAT effectively reduced the sheath blight disease development (AUDPC value 416) as compared to farmer practice (AUDPC value 852). Similarly, AUDPC value of brown spot was reduced from 930 to 626 due to adoption of IPM practices (Table 13.3).

Table 13.3: AUDPC values based on disease severity (%) of rice diseases recorded at different dates at Nawagam and Navsari-*Kharif* '2023

		AUDPC Values	
Treatment	Nawagam	Na	ivsari
	Sheath rot	Sheath blight	Brown spot
L1 - IPM	563	416	626
L1- FP	705	852	930
L2- IPM	416	-	-
L2 - FP	539	-	-
L3 - IPM	404	-	-
L3 - FP	574	-	-

(L- Location; IPM - Integrated Pest Management Practices; FP-Farmer Practices)

Zone V (Central zone – Jagdalpur)

Under Central zone, the trial was conducted only at Jagdalpur, wherein IPM practices and farmer practices were compared for the management of leaf blast, neck blast, sheath blight and brown spot. With respect to leaf blast and neck blast, in the IPM field, the disease progress in terms of AUDPC values were reduced from 412 to 164 and from 248 to 167 respectively. Similarly, sheath blight and brown spot diseases were managed using the IPM practices and wherein the disease progress was reduced from 421 to 173 and from 125 to 78 respectively. Similar trend was also observed in case of false smut disease incidence, wherein the disease was nil in the IPM practices adopted field as compared to the farmer adopted practices (56.71%) (Table 13.4)

Table 13.4: AUDPC values based on disease severity (%) of rice diseases recorded at different dates at Jagdalpur, *Kharif* '2023

	Treatment		AUDI	PC Values		False smut
		Le af Blast	Neck blast	Sheath blight	Brown spot	(DI %)
L1	IPM	164	167	173	78	0
	FP	412	248	421	125	56.71

(L- Location; IPM - Integrated Pest Management Practices; FP-Farmer Practices)

Zone VII (Southern zone – Aduthurai, Gangavathi, Mandya, Rajendranagar)

At Aduthurai, the trial was conducted for the management of false smut and bacterial blight. Adoption of IPM practices reduced the disease progress of false smut and bacterial blight. AUDPC values of bacterial blight disease was significantly low compared to farmer practices (L1 = IPM - 88; FP-288; L2 = IPM - 78; FP - 229; L3 = IPM - 105; FP - 295). In case of false smut disease, application of IPM practices were effective at all the three locations, wherein the AUDPC values were ranged from 22 to 27 in the IPM field and the values were ranged from 89 to 124 in the farmer practices. At Mandya, the IPM practices were evaluated against only for leaf blast wherein the disease progress values reduced significantly as compared to farmer practices (L1= IPM-90, FP-234; L2 = IPM-94, FP-227; IPM-63, FP-165). At Rajendranagar, the trial was conducted for the management of neck blast in three locations and brown spot in one location. Application of IPM practices viz., seed treatment with Trichoderma viride (a) 10 g per kg seed, application of carbendazim 25% + mancozeb 50% WS @ 100 g per acre, spraying of carbendazim + mancozeb @ 500 g per acre at PI to booting stage effectively reduced the percentage disease severity of neck blast (L1 = IPM - 0.9%; FP-5.9%. L2 = IPM - 0.1%; FP - 3.9%; L3 = IPM - 4.0%; FP - 7.7%) and brown spot (L1 = IPM - 16.8%; FP - 52.2%) disease progress in the IPM practices as compared to the farmer practices adopted field (Table 13.5).

Table 13.5: AUDPC values based on disease severity (%) of rice diseases recorded at different dates at Aduthurai, Mandya, Rajendranagar *-Kharif* '2023

		AUDPC	Values		DS	(%)
	Treatment	Adı	ıthurai	Mandya	R	NR
		FS	BB	LB	NB	BS
L1	IPM	22	88	90	0.9	16.8
	FP	124	288	234	5.9	52.2
L2	IPM	24	78	94	0.1	-

		AUDPC	Values		DS	(%)
	Treatment	Adu	ıthurai	Mandya	R	NR
		FS	BB	LB	NB	BS
	FP	89	229	227	3.9	-
L3	IPM	27	105	63	4.0	-
	FP	105	295	165	7.7	-

(L= Location; IPM – Integrated Pest Management Practices; FP- Farmer Practices)

At Gangavathi, adoption of IPM practices reduced the disease progress of leaf blast (IPM-16, FP-30), Neck blast (IPM-16, FP-30), brown spot (IPM-434, FP-545) and false smut (IPM-6.4, FP-11.02%) as compared to the farmer practices. In case of bacterial blight and sheath blight diseases, though diseases progress were reduced, the difference in the AUDPC values between the IPM and FP practices was low as compared to other diseases (Table 13.6).

Table 13.6: AUDPC values based on disease severity (%) of rice diseases recorded at different dates at Gangavathi -*Kharif* '2023

Location	Treatment		A	UDPC Va	lues		(DI %)
		LB	NB	BB	SHB	BS	FS
L1	IPM	16	84	431	1010	434	6.4
	FP	30	111	501	1180	545	11.02

(L- Location; IPM – Integrated Pest Management Practices; FP- Farmer Practices; LB- Leaf Blast; NB- Neck Blast; BB-Bacterial blight; SHB- Sheath Blight; BS- Brown spot; FS- False smut; DI- Disease Incidence)

TRIAL No.14: SPECIAL TRIAL ON YIELD LOSS ASSESSMENT DUE TO MAJOR RICE DISEASES- Kharif - 2023

The yield loss trial was formulated to know the impact of the major rice diseases on the grain yield of the rice crop. The trial includes 3 different treatments, i.e. different graded levels of disease infections and one control treatment where there are no infections of the pathogen. Each treatment is replicated three times in an RBD pattern. As of now, the trial was proposed only for three major diseases *viz.*, leaf blast, sheath blight, and bacterial blight. The respective pathogens were artificially inoculated by standardized method and observations were recorded as percent disease index. The trial was proposed at 11 hot spot locations and data was received from 9 locations. With respect to leaf blast, the trial was taken up at Jagdalpur, Mandya, and IIRR. In case of sheath blight, the trial on bacterial blight was taken up at Moncompu, Maruteru, Pantnagar, Pattambi and IIRR. Trail details of each location are given in the Table 14.1.

Leaf blast

The trial was conducted at 3 locations. Leaf blast susceptible varieties viz., Swarna (at Jagdalpur), MTU 1001 (at Mandya) and HR 12 (at IIRR) were used for yield loss assessment. In all the locations, pathogen was artificially inoculated by spraying conidial suspension or supplementing with spreading of diseased leaves and disease was recorded as percent disease index (PDI) and grain yield was recorded as kg/ha. Among the three locations, the highest Per cent disease index (PDI) of leaf blast was recorded at IIRR (62.22%) followed by Jagdalpur (60.00%) and in Mandya the PDI was 38.67% when the pathogen was inoculated thrice at interval of two days (T1). At Jagdalpur, when the inoculum sprayed twice at an interval of 2 days (T2 treatment) the PDI was recorded as 51.85% and 35.56 % when the inoculum was sprayed only once (T3 Treatment). The highest yield reduction of 26.46% was recorded when the PDI was 60.00% and it was 23.04% and 14.74% in the treatments T2 and T3 respectively. At Mandya T1, T2 and T3 treatments recorded the PDI as 38.67%, 23.55% and 16.29% respectively. The highest yield reduction of 60.29% was recorded when the PDI was 38.67%. However, at IIRR the PDI of 62.22% and 38.89% recorded the percentage of yield reduction as 24.87% and 23.42% respectively. The mean value was calculated across the locations and the results revealed that 53.63% of PDI reduced the yield up to 37.21%; 38.10% of PDI recorded 27.06% of yield reduction and 26.54% of PDI recorded the 12.20% of yield reduction (Table 14.2).

					D	- (~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Date of call	14 o c		
1	,	Disease			•		Date of activit	ues		
S.N0	Location	Recorded	Test Variety	Screening	Sowing/ Transplanting	Inoculation	Initial symptom	Spraying Date	Observation	Harvesting
-	Gangavath	iSheath blight	GNV-10-89	Artificial	29.08.2023 05.09.2023	20.10.2023	30.10.2023	25.102023 10.11.2023	30.11.2023	21.12.2023
7	Jagdalpur	Leaf blast	Swarna	Artificial	05.07.2023 31.07.2023	ı	10.08.2023	,	15.08.2023 12.10.2023	18.12.2023
3	Ludhiana	Sheath blight	PR114	Artificial	07.06.2023 01.07.2023	10.09.2023			30.09.2023	14.10.2023
	Mondvo	Leaf blast	MT UI 001	Artificial	11.08.2023 12.09.2023	16.10.2023	21.10.2023	17.10.2023 04.11.2023	20.10.2023 11.11.2023 21.11.2023 09.12.2023 22.12.2023	03.01.2024
r	Manuda	Sheath blight	MT UI 001	Artificial	11.08.2023 12.09.2023	16.10.2023	21.10.2023	17.10.2023 04.11.2023	20.10.2023 11.11.2023 21.11.2023 09.12.2023 22.12.2023	03.01.2024
Ś	Moncompu	Sheath blight	UMA(MO 16)	Artificial	07.07.2023 29.07.2023	25.09.2023	10.01.2023	01.10.2023	01.10.2023 02.11.2023	22.11.2023
1		Bacterial leaf blight	1UMA(MO 16)	Artificial	07.07.2023 29.07.2023	25.09.2023 12.10.2023	18.10.2023	19.10.2023	18.10.2023 05.11.2023	22.11.2023
و	Marinterii	Sheath blight	Swarna (MTU 7029)	Artificial	10.07.2023 10.08.2023	$\begin{array}{c} 15.09.2023 \\ 16.09.2023 \end{array}$	26.09.2023	$\begin{array}{c} 01.10.2023 \\ 13.10.2023 \\ 01.11.2023 \end{array}$	28.09.2023	15.12.2023
	n ian miat	Bacterial leaf blight	MTU - 2077 (Krishnaveni)	Artificial	10.07.2023 10.08.2023	30.09.2023	07.10.2023	$\begin{array}{c} 10.10.2023 \\ 24.10.2023 \\ 08.11.2023 \end{array}$	17.10.2023	15.12.2023
7	Pantnagar	Bacterial leaf blight	(TN1	Artificial	10.07.2023 03.08.2023	21.09.2023		04.10.2023 14.10.2023		01.12.2023
8	Pattambi	Bacterial leaf blight	tJyothi	Artificial	08.07.2023 02.08.2023	06.10.2023	14.10.2023	17.10.2023	14.10.2023	04.11.2023
		Leafblast	HR12	Artificial	18-06-2023 17-07-2023	25-08-2023 10-09-2023 15-09-2023	10.09.2023	05.09.2023	03.09.2023 10.09.2023 25.09.2023	25.11.2023
6	IIRR	Sheath blight	BPT 5204	Artificial	08.07.2023 13.08.2023	17.10.2023	20.10.2023		10.11.2023	05.12.2023
		Bacterial leaf blight	IN1	Artificial	08.07.2023 13.08.2023	14-09-2023	02.10.2023	ı	16-10-2023	04.12.2023

Table 14.1: Experimental details of IDM for the management of rice diseases, Kharif-2023

Vield % yield % yield % yield PDI Yield PDI PDI		dui			Leaf	Blast		ПВВ		M	uea
control contro <thcontrol< th=""> <thcontrol< th=""> <thc< th=""><th></th><th>Yield Kg/ha)</th><th>% yield reduction over</th><th>104 (%)</th><th>Yield (Kg/ha)</th><th>% yield reduction over</th><th>PDI (%)</th><th>Yield (Kg/ha)</th><th>% yield reduction over control</th><th>MI IDI (%)</th><th>ean % yield reduction over control</th></thc<></thcontrol<></thcontrol<>		Yield Kg/ha)	% yield reduction over	104 (%)	Yield (Kg/ha)	% yield reduction over	PDI (%)	Yield (Kg/ha)	% yield reduction over control	MI IDI (%)	ean % yield reduction over control
2872 23.55 3946 34.71 38.89 3510 23.42 38.10 27.06 3182 14.74 (28.75) 3946 34.71 (38.56) 3510 23.42 38.10 27.06 3182 14.74 (23.70) 5356 11.38 27.78 4103 10.47 26.54 12.20 3732 0.00 12.40 6044 0.00 18.15 4583 0.00 17.96 0.00 3732 0.00 (20.34) 6044 0.00 (25.17) 4583 0.00 17.96 0.00 1.35 18.32 13.52 4.15 4.12 4.12 7.96 9.00 58.33 7.01 826.26 3.06 32.21 7.0 7.0 7.0 7.0 7.0 7.0 7.06 7.06 373.3 7.01 826.26 7.06 32.21 7.06 7.06 7.06 7.06 7.0 7.0 7.0 7.0 7	-	2744	26.46	38.67 (38.18)	2400	60.29	62.22 (52.05)	3443	24.87	53.63	37.21
3182 14.74 16.29 5356 11.38 27.78 4103 10.47 26.54 12.20 3732 0.00 12.40 6044 0.00 18.15 4583 0.00 17.96 0.00 3732 0.00 12.40 6044 0.00 18.15 4583 0.00 17.96 0.00 1.35 18.32 13.52 4.15 4.12 4.12 0.00 17.96 0.00 1.35 7.01 826.26 3.06 32.21 32.21 7.0 826.26 3.06 32.21 7.0 <t< td=""><td>-</td><td>2872</td><td>23.04</td><td>23.55 (28.75)</td><td>3946</td><td>34.71</td><td>38.89 (38.56)</td><td>3510</td><td>23.42</td><td>38.10</td><td>27.06</td></t<>	-	2872	23.04	23.55 (28.75)	3946	34.71	38.89 (38.56)	3510	23.42	38.10	27.06
3732 0.00 12.40 6044 0.00 18.15 4583 0.00 17.96 0.00 1.35 \sim 18.32 13.52 \sim 4.15 4.12 17.96 0.00 1.35 \sim 18.32 13.52 \sim 4.15 4.12 \sim \sim 58.33 \sim 7.01 826.26 \sim 3.06 32.21 \sim \sim \sim AT AT AT AT AT \sim <	-	3182	14.74	16.29 (23.70)	5356	11.38	27.78 (31.77)	4103	10.47	26.54	12.20
1.35 18.32 13.52 4.15 4.12 58.33 7.01 826.26 3.06 32.21 AT AT AT AT	-	3732	0.00	12.40 (20.34)	6044	00.00	18.15 (25.17)	4583	0.00	17.96	0.00
58.33 7.01 826.26 3.06 32.21 AT AT AT AT		1.35		18.32	13.52		4.15	4.12			
AT AT		58.33		7.01	826.26		3.06	32.21			
				АТ			AT				

Table 14.2: Leaf blast disease severity on rice grain yield, Kharif-2023

(PDI-Percent disease index; Figures in the parenthesis indicates Arc sine transformed means)

Treatment de tails: T1- Inoculation of all plants in a block (100% plants) T2- Inoculation of alternate plants in a block (50% plants)

T3- Inoculation of once in three plants in a block (33% plants) T4- Un-inoculated + fungicide treated control plot Sheath blight: Sheath blight yield loss trail was conducted at six locations viz., Gangavathi, IIRR, Ludhiana, Mandya, Maruteru and Moncompu. The treatments were maintained with different level of pathogen infection viz., entire block (1 sq.mt) is artificially inoculated (100% infection) (T1), alternate plants in the block are inoculated (50% infection) (T2), one in each three plants of the entire block are inoculated (33% infection) (T3) and un-inoculated control (T4).

At Gangavathi, the trial was conducted in the sheath blight susceptible variety GV-10-89. The highest PDI of 83.08% was recorded in the T1 treatment and the corresponding percentage of yield reduction was 46.42%. Similarly, the lowest PDI of 54.60% reduced the yield up to 15.96%. At Ludhiana, the trial was carried with the susceptible variety PR114 and the maximum yield reduction of 33.41% was recorded with the highest PDI of 78.15%. At Mandya, MTU1001 was selected for the trial and highest PDI of 62.67% recorded the yield reduction up to 46.06% and the other treatments T2 (PDI 38.67%) and T3 (PDI 29.78%) recorded yield reduction of 31.49% and 25.55% respectively (Table 14.3). At Maruteru, the highest PDI of 70.93% (T1) recorded the yield reduction up to 22.93% in the susceptible variety MTU 7029. At Moncompu, variety Uma was selected for the trial, wherein 67.32% of PDI (T1) recorded the yield reduction as 46.11%. At IIRR, BPT 5204 was chosen for the trial and the treatment T1 recorded the PDI of 78.28% with the yield reduction of 45.86%. The mean value was calculated across the locations and the results revealed that 73.41% of PDI recorded the yield reduction of 40.13%; 53.45% of PDI recorded the yield reduction (Table 14.3).

Bacterial blight: Yield loss trial on bacterial blight was conducted at five locations. The trial was conducted with three treatments, *viz.*, artificial inoculation of *Xoo* of all the plants/hills (T1), inoculation of alternate plants/ hills (T2) and inoculation one in every three plants/ hills (T3) and uninoculated control (T4) along with 5 replications.

The bacterial blight susceptible varieties selected for the trial were TN1 at IIRR, Pantnagar; MTU 2077 at Maruteru, Uma at Moncompu and Jyothi at Pattambi. At Maruteru, T1 treatment recorded the PDI of 71.80% with 27.29% yield reduction and 6.87% yield reduction was recorded with the PDI of 41.51%. However, at Moncompu, 17.77% of PDI recorded the yield reduction of 15.45% and the 53.77% of PDI recorded 38.73% yield reduction. At Pantnagar the highest PDI of 95.59% resulted in the yield reduction of 45.19% followed by 74.83% PDI with 27.24% yield reduction (Table 14.4A). At Pattambi, 24.13% yield reduction was recorded with the PDI of 75.08% (T1); 19.97% of yield reduction with 60.97% PDI and 14.57% yield reduction with the PDI of 56.88%. At IIRR, the PDI of 38.17% recorded the yield of loss of 21.40%; 18.79% of PDI recorded the yield loss of 15.64% and 12.84% PDI recorded 9.05% yield loss. The overall mean values across the locations revealed that 66.88% PDI caused a yield loss of 31.35%; 47.03% of PDI caused a yield loss of 20.63% and 37.23% of PDI recorded a yield loss of 12.20% (Table 14.4).

			She	e ath Blig	ght				
		GNV			LUD			MND	
T. No	PDI (%)	Yield (Kg/ha)	% yield reduction over control	PDI (%)	Yield (Kg/ha)	% yield reduction over control	PDI (%)	Yield (Kg/ha)	% yield reduction over control
T1	83.08 (65.72)	3519	46.42	78.15 (62.12)	4043	33.41	62.67 (52.73)	3488	46.06
Τ2	69.42 (56.43)	4512	31.30	46.30 (42.86)	4772	21.39	38.67 (38.04)	4430	31.49
Т3	54.60 (47.64)	5520	15.96	38.58 (38.36)	5314	12.47	29.78 (32.41)	4814	25.55
T4	8.78 (17.18)	6568	0.00	1.85 (6.80)	6071	0.00	18.66 (24.52)	6466	0.00
C.V (%)	5.78	5.21		7.31	6.06		20.84	25.72	
LSD @ 5% ($P = 0.05$)	3.72	361		3.78	421		10.61	1700	
Transformation	AT			AT			AT		

 Table 14.3: Sheath blight disease severity on rice grain yield, Kharif-2023

 Sheath Direct

(PDI-Percent disease index; Figures in the parenthesis indicates Arc sine transformed means)

Treatment details:

- T1- Inoculation of all plants in a block (100% plants)
- T2- Inoculation of alternate plants in a block (50% plants)
- T3- Inoculation of once in three plants in a block (33% plants)
- T4- Un-inoculated + fungicide treated control plot

					She ath B	Blight					
		MTU			MNC			IIRR		N	lean
T. No	PDI (%)	Yield (Kg/ha)	% yield reducti on over control	PDI (%)	Yield (Kg/ha)	% yield reductio n over control	PDI (%)	Yield (Kg/ha)	% yield reducti on over control	PDI (%)	% yield reduction over control
T1	70.93 (58.16)	4470	22.93	67.32 (55.24)	4132	46.11	78.28 (62.42)	2435	45.86	73.41	40.13
Τ2	56.78 (48.89)	5180	10.69	39.55 (38.88)	5163	32.66	69.98 (56.85)	2928	34.89	53.45	27.07
Т3	26.00 (30.63)	5444	6.14	27.55 (31.45)	6282	18.06	39.40 (38.84)	3572	20.59	35.99	16.46
T4	1.11 (2.73)	5800	0.00	9.99 (17.54)	7667	0.00	0.00 (0.00)	4498	0.00	6.73	0.00
C.V (%)	16.96	17.60		15.88	2.21		9.32	9.06			
LSD @ 5% (P=0.05)	8.20	1266		7.83	177		5.08	419			
Transformation	AT			AT			AT				

(Contd.,) Table 14.3: Sheath blight disease severity on rice grain yield, Kharif-2023

(PDI-Percent disease index; Figures in the parenthesis indicates Arc sine transformed means)

Treatment details:

T1- Inoculation of all plants in a block (100% plants)

- T2- Inoculation of alternate plants in a block (50% plants)
- T3- Inoculation of once in three plants in a block (33% plants)
- T4- Un-inoculated + fungicide treated control plot

1

			Bact	terial Le	af Blight				
		MTU			MNC			PNT	
T. No	PDI (%)	Yield (Kg/ha)	% yield reduction over control	PDI (%)	Yield (Kg/ha)	% yield reduction over control	PDI (%)	Yield (Kg/ha)	% yield reduction over control
T1	71.80 (57.95)	4130	27.29	53.77 (47.18)	4422	38.73	95.59 (78.00)	3420	45.19
T2	57.67 (49.40)	4694	17.36	22.89 (28.15)	5561	22.95	74.83 (59.89)	4540	27.24
Т3	41.51 (39.98)	5290	6.87	17.77 (24.79)	6102	15.45	57.14 (49.09)	5300	15.06
T4	11.29 (19.29)	5680	0.00	9.55 (17.91)	7217	0.00	12.59 (20.62)	6240	0.00
C.V (%)	10.65	17.72		13.52	0.89		4.69	8.65	
LSD @ 5% ($P = 0.05$)	6.12	1208		5.50	71		3.36	580	
Transformation	AT			AT			AT		

 Table14.4: Impact of bacterial leaf blight incidence on grain yield - Kharif, 2023

(PDI – Percent Disease Index; Figures in the parenthesis indicate transformed means; AT-Arc sine transformation)

Treatment details:

- T1 Inoculation of all the plants/hills (disease intensity is more than 50%)
- T2 Inoculation of alternate plants/ hills (disease intensity is 30-50%)
- T3 Inoculation one in every three plants/hills (disease intensity is below 30%)
- T4 Un-inoculated + antibiotic treated control plot

Bacterial Leaf Blight										
	РТВ				IIRR	Mean				
T. No	PDI (%)	Yield (Kg/ha)	% yield reduction over control	PDI (%)	Yield (Kg/ha)	% yield reduction over control	PDI (%)	% yield reduction over control		
T1	75.08 (60.05)	2545	24.13	38.17 (38.14)	6367	21.40	66.88	31.35		
T2	60.97 (51.32)	2685	19.97	18.79 (25.66)	6833	15.64	47.03	20.63		
Т3	56.88 (48.96)	2866	14.57	12.84 (20.98)	7367	9.05	37.23	12.20		
T4	9.50 (17.76)	3355	0.00	0.83 (5.23)	8100	0.00	8.75	0.00		
C.V (%)	6.35	4.63		5.14	7.71					
LSD @ 5% (P= 0.05)	3.89	182		2.30	1104					
Transformation	AT			AT						

(Contd.,) Table14.4B: Impact of bacterial leaf blight incidence on grain yield - *Kharif*, 2023 Bacterial Leaf Blight

(PDI – Percent Disease Index; Figures in the parenthesis indicate transformed means; AT-Arc sine transformation)

Treatment details:

T1 - Inoculation of all the plants/hills (disease intensity is more than 50%)

T2 - Inoculation of alternate plants/ hills (disease intensity is 30-50%)

T3 – Inoculation one in every three plants/hills (disease intensity is below 30%)

T4 - Un-inoculated + antibiotic treated control plot

TRIAL NO.15: SPECIAL SCREENING TRIAL ON FALSE SMUT – Kharif 2023

One hundred and twelve National Screening Nursery 1 (NSN-1) Advanced Varietal Trial entries with the duration of early and mid-early were selected for false smut screening trial. The trial was proposed at five locations *viz.*, Gangavathi, Gudalur, IIRR Ludhiana, Masodha and it was conducted at all the locations except Ludhiana. The centres were advised to screen the entries either artificially or naturally and the detailed methodology of artificial screening technique standardised at IIRR, Hyderabad was given in the Technical Programme 2023-24. Observations were recorded in 10 Hills as number of smut balls per Hill. The recorded data were presented in the Table 15.1.

Gudalur: At this location, NSN-1 entries were sown on 22.08.2023, transplanted on 26.09.2023 and screened naturally against false smut disease. At this location, the data was recorded in terms of number on smut balls per Hills. Under natural infestation, the percentage of disease infection was 100% and all the entries were infected and the infection level was varied between the entries. Total of 111 entries were screened, wherein 87 entries recorded with maximum of 6 smut balls per hill. Twenty-three entries recorded with more than 6 smut balls per hill. Rainfall received during the November month (67 mm) might have favoured the disease infection (Table 15.2).

Gangavathi: The entries were sown on 28.07.2023 and transplanted on 02.09.2023 and the natural occurrence of disease was noticed on 25-11-2023. The level of disease infection was good and rainfall received in the month of November (38.5 mm) might have coincided with booting stage and favoured the natural disease infection. Among the 112 entries screened, 80 entries were infected and the number of smut balls varied from 1 to 30. Sixty-five (65) entries recorded smut ball range of 1 to 6 per Hill and 32 entries recorded no smut balls (Table 15.2).

Masodha: The entries screened naturally and the entries were sown on 04.07.2023 and transplanted on 29.07.2023. However, to augment the disease, the chlamydospore suspension was sprayed during panicle emergence stage. Symptoms were observed on 20.10.2023. Amount of rainfall in the month of October was low (11 mm) and hence the disease infection was low. Among the screened entries, the number of smut balls varied from 0 to 8 per Hill. Eighteen entries were recorded zero smut balls and 93 entries recorded 1 to 6 smut balls per Hill (Table 15.2).

IIRR, Hyderabad: The entries were sown on 16th June, 2023 and transplanted on 17th July, 2023. The *Ustilaginoidea virens* conidial suspension was prepared and injection method of inoculation was adopted to screen the entries. For each entry, minimum of four panicles were inoculated and observations were recorded during maturity stage. Observation was recorded as number of smut balls per panicle. The field was provided with green shade and sprinkler system

to create conducive conditions for false smut disease. The inoculation was initiated on 18.09.2023 and ended on 20.10.2023. Number of smut balls varied from 0 to 64 per panicle. Among the 112 entries screened, 80 entries were recorded 4 to 64 smut balls per panicle. Twenty-four entries recorded 1 to 3 smut balls and 8 entries recorded zero smut ball per panicle. With respect to weather data, good amount of rainfall (271mm) was received in the month of September 2023, which might have favoured disease infection and development (Table 15.2).

 Table 15.1: Disease reaction of NSN-1 entries against False smut disease under artificial/natural condition

S. No.	P. No.	Max.S mut Balls/ panicle	Max. Smut Balls/ HILL			S.No.	P. No.	Max. Smut Balls /panicle	Max. Smut Balls/Hill		
		IIRR	GDL	GNV	MSD			IIRR	GDL	GNV	MSD
N/A		Artificial	Natural				Artificial	Natural			
1	1	16	6	0	8	57	57	1	3	0	0
2	2	2	5	2	5	58	58	0	5	1	0
3	3	1	5	0	5	59	59	5	5	0	1
4	4	18	5	0	3	60	60	5	5	5	1
5	5	10	5	0	5	61	61	4	5	0	0
6	6	4	5	4	2	62	62	1	5	19	1
7	7	20	4	0	3	63	63	4	5	0	1
8	8	12	5	2	2	64	64	6	5	1	1
9	9	4	5	5	1	65	65	1	4	1	1
10	10	15	5	1	2	66	66	1	5	0	1
11	11	10	5	9	4	67	67	3	4	5	1
12	12	20	5	0	2	68	68	10	4	1	1
13	13	10	5	5	4	69	69	4	5	0	1
14	14	4	5	0	2	70	70	25	4	1	1
15	15	13	5	10	4	71	71	16	4	0	1
16	16	17	5	4	2	72	72	20	5	1	2
17	17	11	5	1	1	73	73	18	5	2	0
18	18	21	5	0	0	74	74	24	3	1	2
19	19	5	5	1	6	75	75	25	5	20	4
20	20	10	6	1	5	76	76	1	0	6	1
21	21	22	7	0	1	77	183	4	5	0	1
22	22	5	6	1	1	78	184	0	5	1	1
23	23	8	6	0	3	79	185	6	5	1	0
24	24	40	6	0	1	80	186	3	5	10	3
25	25	15	6	2	1	81	187	0	7	2	1
26	26	23	6	0	2	82	188	0	5	5	2

S. No.	P. No.	Max.Smut Balls/ panicle	Max. Smut Balls/ HILL		S.No.	P. No.	Max. Smut Balls /panicle	Max. Smut Balls/Hill			
		IIRR	GDL	GNV	MSD			IIRR	GDL	GNV	MSD
N/A		Artificial		Natural				Artificial		Natural	
27	27	13	7	1	1	83	189	10	6	0	0
28	28	10	6	2	4	84	190	11	6	1	1
29	29	30	6	6	1	85	191	3	11	5	1
30	30	10	6	4	1	86	192	4	7	1	2
31	31	0	6	2	0	87	193	3	10	1	1
32	32	5	6	1	3	88	194	32	12	10	1
33	33	5	6	15	2	89	195	4	8	3	3
34	34	15	5	30	2	90	196	1	13	1	3
35	35	1	6	15	2	91	197	5	5	2	2
36	36	4	6	6	4	92	198	3	7	4	1
37	37	3	5	4	1	93	199	0	9	0	0
38	38	20	4	1	2	94	200	2	5	10	1
39	39	3	5	0	1	95	201	2	9	5	3
40	40	12	5	4	1	96	202	35	10	20	1
41	41	4	5	3	1	97	203	11	17	20	0
42	42	2	5	1	2	98	204	2	5	15	1
43	43	9	5	6	2	99	205	6	4	10	0
44	44	20	5	0	1	100	206	15	7	6	1
45	45	22	5	0	2	101	207	15	5	2	0
46	46	12	5	1	2	102	208	0	10	2	0
47	47	21	5	0	1	103	209	5	14	15	0
48	48	RD	NG	0	4	104	210	10	13	1	1
49	49	7	5	4	5	105	211	13	4	6	1
50	50	64	5	3	1	106	212	1	9	1	0
51	51	6	5	0	0	107	213	2	7	0	0
52	52	3	5	0	1	108	214	0	3	1	0
53	53	3	5	1	2	109	215	20	9	2	2
54	54	32	5	0	1	110	216	15	4	1	2
55	55	6	5	0	2	111	217	4	10	4	3
56	56	8	5	1	1	112	218	8	8	1	2

RD- Rat Damage; NG- Non-Germinated

Location	GDL	GNV	MSD	Location	IIRR
Nature of screening	Natural	Natural	Natural	Nature of Screening	Artificial
Date of Sowing	22.08.2023	28.07.2023	04.07.2023	-	16.06.2023
Date of Transplanting	26.09.2023	02.09.2023	29.07.2023	-	17.07.2023
Maximum number of smut balls observed /Hill	17	30	8	Maximum number of smut balls observed /Panicle	64
Range of smut balls produced per Hill	0-17	0-30	0-8	Range of smut balls produced per Panicle	0-64
Number of entries with zero smut balls	1	32	18	Number of entries with zero smut balls	8
Number of entries with 1 to 6 smut balls/Hill	87	65	93	Number of entries with 1 to 3 smut balls/Panicle	24
Number of entries >6 smut balls/Hills	23	15	1	Number of entries ≥4 smut balls/Panicle	80
Number of entries screened	111	112	112	Number of entries screened	112
Number of infected Entries	111	80	94	Number of infected Entries	104
Percentage of false smut infection (%)	100	71.42	83.92	Percentage of false smut infection	92.86

Table 15.2: Details of Natural / Artificial screening trial against False Smut Disease

All the four-location data were compared based on number smut balls per panicle/Hill. Among the 112 lines screened both artificially and naturally, fourteen entries viz., 30178, CSR 36, 30078, 29536, 30032, 30029, 30020, 29405, 29549, 30240, 30270, 29284, 29290 and ADT 39 found as tolerant against false smut disease. These results are preliminary and these results must be confirmed in *Kharif* 2024 across the false smut hot spot locations to confirm the false smut disease tolerance (Table 15.3).
ICAR-IIRR - AICRPR - Annual Progress Report 2023, Vol.2, Plant Pathology

NOT NIGHT		noon mills of a summer s	A SUMMANA IN INTERVIEW IN TARIA IN A A A A A A A A A A A A A A A A A		
				Maximum no.of smut	Maximum no.
				ball/Hill - across the	of Smut balls/
<u>N</u> NO				locations	Panicle (up to
F.110.		Designation	Cross Combination	(up to 6 smut	3) – Artificial
	N0.	D		balls/Hill)- Natural	Screening
				Screening	
2	30178	NVSR 6361	NVSR 178 / IR 71907-3R-2-1-1	5	2
3	CSR 36	1	1	5	1
31	30078	MTU 1382	MTU 1075 / MTU 1001	9	0
37	29536	OR 2674-14-6-2	CRMS 32A / OR 1889-5	5	c,
39	30032	BRR 0181-IR 93827-29-1-1-4	IR 81039-B-173-U 3-3 / IR 81063-B-94-U 3-1	5	n
42	30029	BRR 2183	IR 74355-CN3 / CN 6-78	5	2
52	30020	CRR 842-IR14L159	IR 10N102 / IR 86931-B-400	5	С
53	29405	RCPR 70-IR 84899-B-184-16-1-1-1	IR 78877-208-B-1-1 / IRRI 132	5	n
57	29549	RP 5977-MS-M-112-1-9-22-4-6-3	BPT 5204 Mutant	c.	1
65	30240	RP 6524-MSA-16-399-16-332	Swarna / MTU 1010	4	1
67	30270	CR 4358-3-3-1-2-1	CR 3543-6-3-1-2-1-1 / CR 3510 -12-1-1-2-1-1	5	3
184	29284	MTU 1348 (MTU 2689-45-1-1)	MTU 1010 / MTU 7029	5	0
188	29290	HURS 19-3	CR 2407 / IR 64	5	0
214	ADT 39	-	1	3	0

Table 15.3: Entries Promising against False smut disease both under Natural/Artificial screening conditions

TRIAL No.16: SPCIAL TRIAL ON SCREENING FOR BROWN SPOT RESISTANCE UNDER ARTIFICIAL SCREENING

The aim of this trial is to introduce/expand artificial inoculation method of screening against emerging diseases like brown spot in different centres and to identify promising cultures in Advanced Variety Trials (NSN-1) under artificial method of screening. During *Kharif*, 2023, the trial was proposed at five centres *viz.*, Gangavathi, IIRR, Ludhiana, Pusa and Rewa; however, the trial was conducted at four centres except at Rewa.

The National Screening Nursery (NSN-1) comprised of 432 entries evaluated under artificial inoculation conditions at Gangavathi, IIRR, Ludhiana and Pusa. The frequency distribution of disease scores and the representative location severity index (LSI) are presented in the Table 16.1A. The disease pressure was very high (LSI >7.0) at Gangavathi (8.2), Pusa (7.8), IIRR (7.0); while it was high (LSI 6-7) at Ludhiana (6.3). The selection of promising entries was done based on the data of all the four locations and presented in Table 16.1B. None of the entry was found resistant (SI \leq 3.0) against brown spot disease under NSN-1 based on the selection from four locations; however, a few promising entries with low SI (\leq 6.3) and high PI included IET#30233, 30679, 29354, 29692, 29694, 29560, 30643, 30178, 29142, 29947, 30023, 29549, 31130, 31129, 29726, 32040, 30024, 29577, 31115, 30668 and 29301.

Table 16.1A: Location severity index(LSI) and frequency distribution of brown spot scores of NSN-1, *Kharif* 2023 under artificial inoculation condition.

Saara		Location/Frequen	cy of scores (0-9)	
Score	GNV	IIRR	LDN	PSA
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	2	0
4	0	4	0	0
5	5	17	148	0
6	25	139	0	6
7	81	114	269	80
8	90	115	0	291
9	222	42	8	28
Total	423	431	427	405
LSI	8.2	7.0	6.3	7.8
Screening	Α	Α	Α	Α

(LSI-Location Severity Index; A-Artificial)

			Location/F	requency	of score	es (0-9)				**		**
P.No.	Br. No.	IET No.	GNV	IIRR	LDN	PSA	SI	Tota	<=3*	PI (<-3)	<=2*	PI (<-5)
56	5601	30233	5	6	5	6	5.5	4	0	0	2	50
142	3416	30679	6	6	5	-	5.7	3	0	0	1	33
12	5113	29354 (R)	6	6	5	6	5.8	4	0	0	1	25
21	3309	29692	6	6	5	6	5.8	4	0	0	1	25
16	3304	29694	8	5	5	6	6.0	4	0	0	2	50
114	5718	29560	8	5	5	7	6.3	4	0	0	2	50
153	3427	30643	5	6	5	9	6.3	4	0	0	2	50
2	5102	30178	7	6	5	7	6.3	4	0	0	1	25
29	3317	29142 (R)	7	6	5	7	6.3	4	0	0	1	25
30	3318	29947	6	7	5	7	6.3	4	0	0	1	25
51	4413	30023	6	5	7	7	6.3	4	0	0	1	25
57	5602	29549	5	6	7	7	6.3	4	0	0	1	25
81	6005	31130	7	6	5	7	6.3	4	0	0	1	25
83	6007	31129	7	6	5	7	6.3	4	0	0	1	25
209	3611	29726	6	4	7	8	6.3	4	0	0	1	25
391	3734	32040	9	5	5	-	6.3	3	0	0	2	67
40	4402	30024	-	6	5	8	6.3	3	0	0	1	33
72	5906	29577	7	7	5	-	6.3	3	0	0	1	33
107	5711	31115	6	8	5	-	6.3	3	0	0	1	33
158	3432	30668	-	6	5	8	6.3	3	0	0	1	33
187	3905	29301 (R)	8	6	5	-	6.3	3	0	0	1	33
90	6014	Rasi	7	4	5	8	6.0	4	0	0	2	50
425	CH 45	CH 45	7	4	7	7	6.3	4	0	0	1	25
432	Tetep	Tetep	6	4	7	8	6.3	4	0	0	1	25
76	5910	ISM	8	9	7	9	8.3	4	0	0	0	0
	LSI		8.2	7.0	6.3	7.8						

Table 16.1B: Promising entries with low susceptibility index (<=6.3) and high PI in NSN-1 to brown spot, *Kharif* 2023 under artificial inoculation condition

(SI-Susceptibility Index; *No. of locations where the entry has scored ≤ 5 and ≤ 3 ;**Promising index (PI) based on no. of locations where the entry had scored ≤ 3 and ≤ 5)

AICRPR RAINFED REPORT - Kharif 2023

The All India Coordinated Rice Pathology Program of the ICAR-National Rice Research Institute (formerly as Central Rice Research Institute) is focused on screening the materials developed especially for the rainfed conditions. All the breeders' lines were tested to assess the advanced breeding lines over a wide range of climatic and disease epidemic conditions for identification of broad spectrum resistance to major rice diseases. This also helps in developing need-based management options for controlling major diseases of rice. During 2023, disease screening were made for five major diseases at 18 locations on host plant resistance, field monitoring of virulence of major pathogens and disease management methods. The summary of observations is given below. Detailed data on extensive screening of diverse genotypes are furnished in a separate report entitled 'National Screening Nurseries, 2024'.

BLAST

NSN-1: Data received from 9 centres namely Cuttack, Ghagraghat, Rewa, Ponnampet, Coimbatore, Ranchi, Hazaribag, Jagdalpur, Bankura. The data of Bankura centre is having too less LSI (1.49) so not considered for further analyses. Promising lines identified are IET 30367, 30423, 31237, 31250, 32128,32129,29036, 29038, 30330, 30334, 30351, 29045, 31192, 31170, 31185, 31279, CARI Dhan 5(RP),

NSN-2: Data was received from Cuttack, Ghagraghat, Rewa, Ponnampet, Coimbatore, Ranchi, Hazaribag, Jagdalpur centres and IET Nos. 32080, 32081, 32090, 32092, 32094, 32110, 32111, 32112, 32116, 32118, 32119, 32120, 32143, 32154, 32162, 32163, 32164, 32170, 32172, 32176, 32177, 32183, 32186, 32187, 32199, 32202, 32204, 32211,32227, 32232 showed to be promising. Interestingly data from all the centres were accepted.

*** BROWN SPOT**

NSN-1: Seven centres conducted the trial out of the 7 centres the data of Bankura centre was not considered as it had less location severity index (LSI) (<3.0). As per the data received from rest 6 centres it was observed that out of 74 lines only five lines (IET 30336,29052,31259,31264 and Varshsdhan (RP) showed to be promising. The highest LSI was recorded in RPCAU, PUSA, BIHAR (7.52) and the lowest was recorded in Sabour and Bihar (4.39).

NSN-2: In case of NSN-2 a total of 160 genotypes were screened by 4 centres out of which Sabour center was not considered as the LSI was too low. Interestingly only one line (IET-32086) showed promising.

✤ SHEATH BLIGHT

NSN-1: Cuttack, Maruteru, Masodha, Chinsurah, Raipur, Titabar and Bankura conducted the trial. Data from Bankura centre was not accepted due to very low LSI (2.38). Only three lines namely IET 30367,30409(R) ,32122 were promising.

NSN-2: Cuttack, Maruteru, Masodha, Raipur and Titabar were the centres to conduct the trials. IET Nos 32081, 32138, 32140, 32142, 32143, 32146, 32147, 32148, 32157, 32159, 32160, 32164, 32175, 32177, 32188, 32192, 32193, 32204, 32205, 32206, 32209, 32211, 32213, 32220, 32224 were promising.

✤ SHEATH ROT

NSN-1: Cuttack, Chinsurah, Raipur, Pusa, Bankura, Titabar were the centres who conducted the trials but the data from PUSA, Bankura and Titabar were not accepted as they had very low LSI. 30367,30423,31245, 31242, 31253, Gayatri (RP), 30410(R),32127,32128, 32130, Pooja (RP), 29036,31161, 31258, 31259, 31264,31267, 29031, 29026 were observed to be promising.

NSN-2: Only four centres namely Cuttack, Raipur, Pusa, Titabar conducted the trial but the data from PUSA and Titabar was not accepted due to very low LSI for these centres. IETs 32081,32083,32091,32092,32098,32105,32107,32110,32132,32133,32135,32138,32139,321 40,32142,32143, 32145, 32146, 32147, 32148, 32149, 32154, 32158, 32161, 32163, 32165, 31269(R), 32172, 32173, 32174, 32175, 32176, 32177, 32179, 32181, 32183, 32184, 32188, 32190, 32193, 32194, 32195, 32198, 32199,32201, 32202,32203, 32204, 32205, 32206, 32209, 32212, 32213, 32216, 32217, 32218, 32219, 32220, 32223, 32224, 32225, 32227, 32228, 32230 showed to be promising.

✤ BACTERIAL BLIGHT

NSN-1: Data were received from eight centres out of which the data from Cuttack and Bankura centres were not considered due to too high (8.36) and to low (1.27) LSI respectively. IET nos. 31279, 29031, 29026, 31258, 31259,31164,32123, 32124,32122, 31215, Pooja (RP), Varshadhan (RP)and 30367 are promising.

NSN-2: IETs 32230, 32231,32221,32213,32190,32188,32174, 32175,32164, 32165, 32159,32149, 32150,32141, 32139, 32110, 32098, and 32082 are promising as per the data received from 4 different centres. The data of Cuttack centre and Sabour centres were not accepted due to very high and low LSI respectively.

* Multiple Disease Resistant Lines in NSN-1

Among the screened entries under rainfed conditions, IET 30367 recorded promising reaction against four diseases viz., blast, sheath blight, sheath rot and bacterial blight. The other promising entries were IET Nos. 31264, 32122, 31258, 31279, 29031, 29026, 30423, 32128 and 29036.

IET No.	BS	BB	LB	SHR	SHBL
31264	+			+	
31259	+	+		+	
30367		+	+	+	+
32122		+			+
31258		+		+	
31279		+	+		
29031		+		+	
29026		+		+	
30423			+	+	
32128			+	+	
29036			+	+	

Multiple Disease Resistant Lines in NSN-1 under Rainfed conditions - Khairf 2023

(BS- Brown Spot; BB- Bacterial Blight; LB- Leaf Blast; SHR- Sheath Rot; SHB – Sheath Blight)

Multiple Disease Resistant Lines in NSN-2

Among the screened entries under rainfed conditions, in NSN-2, nine entries recorded resistant/tolerant disease reaction against minimum of three diseases (IET Nos. 32110, 32164, 32175, 32188, 32213, 32081, 32143, 32177, 32204). Thirty entries recorded resistant/tolerant disease reaction against minimum of two diseases. The details are given below in the table format.

Dis- ease	32098	32110	32139	32149	32159	32164	32165	32174	32175	32188	32190	32213	32230	32081	32092	32143	32154	32163	32172	32176	32177
BB	+	+	+	+	+	+	+	+	+	+	+	+	+								
LB		+				+								+	+	+	+	+	+	+	+
SHB					+	+			+	+		+		+		+					+
SHR	+	+	+	+			+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

Multiple Disease Resistant Lines in NSN-2 under Rainfed conditions - Khairf 2023

(BB- Bacterial Blight; LB- Leaf Blast; SHR- Sheath Rot; SHB - Sheath Blight)

(Contd.,) Multiple Disease Resistant Lines in NSN-2 under Rainfed conditions - Khairf 2023

Dise ase	32183	32199	32202	32204	32211	32227	32138	32140	32142	32146	32147	32148	32193	32205	32206	32209	32219	32224
LB	+	+	+	+	+	+												
SHB				+	+		+	+	+	+	+	+	+	+	+	+	+	+
SHR	+	+	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+

(LB- Leaf Blast; SHR- Sheath Rot; SHB – Sheath Blight)

Annexure I

We ather conditions at test locations where Plant Pathology Coordinated Trials were conducted, Kharif-2023

S. No	Location/	Details			We	ather data from	m May-2023	to January-2	024		
1	Aduthurai		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		4	3	2	6	6	3	14	4	3
	Rainfall (mm)		58.5	79.8	14.8	120.9	120.9	17.2	270.6	79.2	134.2
	Temp. (°C)	Maximum	35.9	36.4	35.6	36.5	36.5	34.2	30.9	29.9	29.8
		Minimum	25.9	25.6	25.6	27.1	27.1	24.6	24	22.7	21.7
	RH (%)	Morning	89.6	82.4	79.1	84.5	87.9	91.0	95.7	93.4	95.0
		Evening	61.5	58.9	57.8	57.0	62.5	67.2	79.1	76.9	73.3
2	Almora		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Weather data not av	ailable	•	-	•	-	•			•	-
3	Arundhutinagar		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Weather data not av	ailable									
4	Bankura		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		6	4	9	11	7	6	3	4	-
	Rainfall (mm)		9.8	14.6	7.42	23.1	18.7	54.2	1.02	77.98	-
	T emp. (°C)	Maximum	39	39.2	35.29	33.87	35.06	34.76	30.02	25.8	-
		Minimum	24	27.93	27.7	28.06	26.58	26.65	17.7	13.4	-
	RH (%)	Morning	60.32	82	80.13	69	79.12	68.27	69.7	72	-
		Evening	-	-	-	-	-	-	-	-	-
5	Chatha		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		10	6	10	12	8	4	3	2	-
	Rainfall (mm)		138.4	182.06	388.8	356.2	114.6	100	66.8	9	-
	Temp. (°C)	Maximum	34.1	36.2	33.6	34.8	33.9	30.3	26.2	21.4	-
		Minimum	19.1	24.2	25.5	25.2	23.1	16.3	10.9	5.9	-
	RH (%)	Morning	68	74.1	85	87	89	88	92	96	-
		Evening	38	47	67	66	60	51	51	54	-
6	Chinsurah		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		11	12	20	21	20	8	1	-	-
	Rainfall (mm)		99.9	168.4	148.4	249.3	157.3	153.4	3.4	-	-
	Temp. (°C)	Maximum	36.9	36.7	34.8	33	33.6	31.5	29.8	-	-
		Minimum	24.2	26.4	27.1	26.1	27.1	23.6	18	-	-
7	Chiplima		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		-	-	20	17	14	3	0	3	-
	Rainfall (mm)		-	-	331.8	347.4	242	86.6	0	37.2	-
	T emp. (°C)	Maximum	-	-	32.8	30.9	31.2	31.5	29.6	25.8	-
		Minimum	-	-	25.8	25.4	25.2	21.8	18.2	13.4	-
	RH (%)	Morning	-	-	89.1	91.4	92.9	84.4	86.4	88.4	-
		Evening	-	-	78.8	81.9	77.1	61	49.9	75.4	-
8	Coimbatore		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		12	3	4	0	1	4	13	3	-
	Rainfall (mm)		5.9	0.5	1.5	0	0.4	1.1	13.1	2	-
	T emp. (⁰C)	Maximum	34.3	33.8	31.2	33.5	32.5	32.9	30	28.9	-
		Minimum	24.2	24	23.4	23.5	23.8	23.6	22.9	22.2	-
	RH (%)	Morning	87.7	83.4	83.4	83	83.2	84.8	91	90.3	-
		Evening	56.9	50.9	57.2	48.3	55	46.7	61.1	62.5	-

S. No	Location/ I	Details		W eather data from May-2023 to January-2024									
9	Cuttack		May	June	July	August	Sep	Oct	Nov	Dec	Jan		
	Rainy days (No.)		-	3	7	7	14	3	0	-	-		
	Rainfall (mm)		-	17	128	90.8	297	89	0	-	-		
	Temp. (⁰C)	Maximum	-	33.6	32.0	33.2	31.9	34.0	31.0	-	-		
		Minimum	-	25.8	27.5	25.9	25.0	25.1	23.9	-	-		
	RH (%)	Morning	-	93.8	94.1	88.8	91.6	84.4	82.1	-	-		
		Evening	-	73.3	71.2	88.5	89.6	82.5	76.5	-	-		
10	Faizabad (Masodha)		Мау	June	July	August	Sep	Oct	Nov	Dec	Jan		
	Rainy days (No.)		-	5	11	11	9	2	0	-	-		
	Rainfall (mm)		-	81.6	188.2	242.8	222	11	0	-	-		
	Temp. (°C)	Maximum	-	37.5	33.8	33.2	33.7	32	30.1	-	-		
		Minimum	-	25.2	26.6	25.9	24.9	18.7	14	-	-		
	RH (%)	Morning	-	67.6	80.4	81.6	78.1	72.2	71.3	-	-		
		Evening	-	-	-	-	-	-	-	-	-		
11	Gangavathi		May	June	July	August	Sep	Oct	Nov	Dec	Jan		
	Rainy days (No.)		3	3	11	2	6	0	2	0	-		
	Rainfall (mm)		52.5	35	104.5	13	52.5	0	38.5	0	-		
	T emp. (⁰C)	Maximum	38.01	36.58	30.78	32.93	31.29	32.15	30.15	29.77	-		
		Minimum	25.49	25.51	24.01	23.86	23.77	21.93	21.54	18.23	-		
	RH (%)	Morning	60.1	65.28	79.83	72.63	78.82	71.13	89.37	84.68	-		
		Evening	29.03	41.59	70.93	55.33	65.41	59.53	69.7	49.42	-		
12	Ghaghraghat		May	June	July	August	Sep	Oct	Nov	Dec	Jan		
					J	0				Det	Jan		
	Rainy days (No.)		-	07	13	13	7	3	Nil	2	-		
	Rainy days (No.) Rainfall (mm)		-	07 58	13 173.2	13 210.8	7 474.4	3 38	Nil 0	2 10.8	- -		
	Rainy days (No.) Rainfall (mm) T emp. (°C)	Maximum		07 58 38.23	13 173.2 34.19	13 210.8 31.97	7 474.4 32.43	3 38 32.26	Nil 0 29.3	2 10.8 22.19	- - -		
	Rainy days (No.) Rainfall (mm) T emp. (°C)	Maximum Minimum		07 58 38.23 26.56	13 173.2 34.19 26.81	13 210.8 31.97 26.58	7 474.4 32.43 26.30	3 38 32.26 22.55	Nil 0 29.3 15.5	2 10.8 22.19 11.52	- - - -		
13	Rainy days (No.) Rainfall (mm) T emp. (°C) Gudalur	Maximum Minimum	- - - May	07 58 38.23 26.56 June	13 173.2 34.19 26.81 July	13 210.8 31.97 26.58 August	7 474.4 32.43 26.30 Sep	3 38 32.26 22.55 Oct	Nil 0 29.3 15.5 Nov	2 10.8 22.19 11.52 Dec	- - - Jan		
13	Rainy days (No.) Rainfall (mm) T emp. (°C) Gudalur Rainy days (No.)	Maximum Minimum		07 58 38.23 26.56 June 17	13 173.2 34.19 26.81 July 24	13 210.8 31.97 26.58 August 23	7 474.4 32.43 26.30 Sep 19	3 38 32.26 22.55 Oct 11	Nil 0 29.3 15.5 Nov 8	2 10.8 22.19 11.52 Dec 11	- - - Jan -		
13	Rainy days (No.) Rainfall (mm) Temp. (°C) Gudalur Rainy days (No.) Rainfall (mm)	Maximum Minimum		07 58 38.23 26.56 June 17 418	13 173.2 34.19 26.81 July 24 460	13 210.8 31.97 26.58 August 23 458	7 474.4 32.43 26.30 Sep 19 413	3 38 32.26 22.55 Oct 11 191	Nil 0 29.3 15.5 Nov 8 67	2 10.8 22.19 11.52 Dec 11 58	- - - Jan -		
13	Rainy days (No.) Rainfall (mm) T emp. (°C) Gu dalur Rainy days (No.) Rainfall (mm) T emp. (°C)	Maximum Minimum Maximum		07 58 38.23 26.56 June 17 418 23.2	13 173.2 34.19 26.81 July 24 460 21.9	13 210.8 31.97 26.58 August 23 458 22.3	7 474.4 32.43 26.30 Sep 19 413 25.7	3 38 32.26 22.55 Oct 11 191 25.7	Nil 0 29.3 15.5 Nov 8 67 25.6	2 10.8 22.19 11.52 Dec 11 58 23.9	- - - Jan - -		
13	Rainy days (No.) Rainfall (mm) T emp. (°C) Gudalur Rainy days (No.) Rainfall (mm) T emp. (°C)	Maximum Minimum Maximum Minimum		07 58 38.23 26.56 June 17 418 23.2 16.8	13 173.2 34.19 26.81 July 24 460 21.9 17	13 210.8 31.97 26.58 August 23 458 22.3 16.3	7 474.4 32.43 26.30 Sep 19 413 25.7 16.5	3 38 32.26 22.55 Oct 11 191 25.7 16.5	Nil 0 29.3 15.5 Nov 8 67 25.6 15.1	2 10.8 22.19 11.52 Dec 11 58 23.9 15.2	- - - Jan - - -		
13	Rainy days (No.) Rainfall (mm) T emp. (°C) Gudalur Rainy days (No.) Rainfall (mm) T emp. (°C) RH (%)	Maximum Minimum Maximum Minimum Morning		07 58 38.23 26.56 June 17 418 23.2 16.8 96.7	13 173.2 34.19 26.81 July 24 460 21.9 17 98.3	13 210.8 31.97 26.58 August 23 458 22.3 16.3 98.5	7 474.4 32.43 26.30 Sep 19 413 25.7 16.5 95.3	3 38 32.26 22.55 Oct 11 191 25.7 16.5 93.6	Nil 0 29.3 15.5 Nov 8 67 25.6 15.1 91.2	2 10.8 22.19 11.52 Dec 11 58 23.9 15.2 90.4	- - - Jan - - - -		
13	Rainy days (No.) Rainfall (mm) T emp. (°C) Gu dalur Rainy days (No.) Rainfall (mm) T emp. (°C) RH (%)	Maximum Minimum Maximum Minimum Morning Evening		07 58 38.23 26.56 June 17 418 23.2 16.8 96.7 88	13 173.2 34.19 26.81 July 24 460 21.9 17 98.3 93.2	13 210.8 31.97 26.58 August 23 458 22.3 16.3 98.5 91.7	7 474.4 32.43 26.30 Sep 19 413 25.7 16.5 95.3 90.6	3 38 32.26 22.55 Oct 11 191 25.7 16.5 93.6 86.4	Nil 0 29.3 15.5 Nov 8 67 25.6 15.1 91.2 75.2	2 10.8 22.19 11.52 Dec 11 58 23.9 15.2 90.4 72	- - - - - - - - - - - -		
13	Rainy days (No.) Rainfall (mm) T emp. (°C) Gudalur Rainy days (No.) Rainfall (mm) T emp. (°C) RH (%) Hazaribag	Maximum Minimum Maximum Minimum Morning Evening	- - - May 13 214 26.4 19.3 94.2 78.4 May	07 58 38.23 26.56 June 17 418 23.2 16.8 96.7 88 June	13 173.2 34.19 26.81 July 24 460 21.9 17 98.3 93.2 July	13 210.8 31.97 26.58 August 23 458 22.3 16.3 98.5 91.7 August	7 474.4 32.43 26.30 Sep 19 413 25.7 16.5 95.3 90.6 Sep	3 38 32.26 22.55 Oct 11 191 25.7 16.5 93.6 86.4 Oct	Nil 0 29.3 15.5 Nov 8 67 25.6 15.1 91.2 75.2 Nov	2 10.8 22.19 11.52 Dec 11 58 23.9 15.2 90.4 72 Dec	- - Jan - - - - Jan Jan		
13	Rainy days (No.) Rainfall (mm) T emp. (°C) Gu dalur Rainy days (No.) Rainfall (mm) T emp. (°C) RH (%) Haz aribag Rainy days (No.)	Maximum Minimum Maximum Minimum Morning Evening		07 58 38.23 26.56 June 17 418 23.2 16.8 96.7 88 June 9	13 173.2 34.19 26.81 July 24 460 21.9 17 98.3 93.2 July 19	13 210.8 31.97 26.58 August 23 458 22.3 16.3 98.5 91.7 August 25	7 474.4 32.43 26.30 Sep 19 413 25.7 16.5 95.3 90.6 Sep 25	3 38 32.26 22.55 Oct 11 191 25.7 16.5 93.6 86.4 Oct 7	Nil 0 29.3 15.5 Nov 8 67 25.6 15.1 91.2 75.2 Nov 0	2 10.8 22.19 11.52 Dec 11 58 23.9 15.2 90.4 72 Dec 3	- - - Jan - - - - Jan - Jan -		
13	Rainy days (No.) Rainfall (mm) T emp. (°C) Gu dalur Rainy days (No.) Rainfall (mm) T emp. (°C) RH (%) Haz aribag Rainy days (No.) Rainfall (mm)	Maximum Minimum Maximum Minimum Morning Evening		07 58 38.23 26.56 June 17 418 23.2 16.8 96.7 88 June 9 125.5	13 173.2 34.19 26.81 July 24 460 21.9 17 98.3 93.2 July 19 192.2	13 210.8 31.97 26.58 August 23 458 22.3 16.3 98.5 91.7 August 25 225.4	7 474.4 32.43 26.30 Sep 19 413 25.7 16.5 95.3 90.6 Sep 25 285.6	3 38 32.26 22.55 Oct 11 191 25.7 16.5 93.6 86.4 Oct 7 243.2	Nil 0 29.3 15.5 Nov 8 67 25.6 15.1 91.2 75.2 Nov 0 0 0	2 10.8 22.19 11.52 Dec 11 58 23.9 15.2 90.4 72 Dec 3 49.8	- - - Jan - - - Jan - Jan -		
13	Rainy days (No.) Rainfall (mm) T emp. (°C) Gu dalur Rainy days (No.) Rainfall (mm) T emp. (°C) Haz aribag Rainy days (No.) Rainfall (mm) T emp. (°C)	Maximum Minimum Maximum Morning Evening Maximum		07 58 38.23 26.56 June 17 418 23.2 16.8 96.7 88 June 9 125.5 35.8	13 173.2 34.19 26.81 July 24 460 21.9 17 98.3 93.2 July 19 192.2 30.9	13 210.8 31.97 26.58 August 23 458 22.3 16.3 98.5 91.7 August 25 225.4 28.9	7 474.4 32.43 26.30 Sep 19 413 25.7 16.5 95.3 90.6 Sep 25 285.6 30.1	3 38 32.26 22.55 Oct 11 191 25.7 16.5 93.6 86.4 Oct 7 243.2 28.5	Nil 0 29.3 15.5 Nov 8 67 25.6 15.1 91.2 75.2 Nov 0 0 26.8	2 10.8 22.19 11.52 Dec 11 58 23.9 15.2 90.4 72 Dec 3 49.8 27	- - - Jan - - - - Jan - Jan - - - - - - -		
13	Rainy days (No.) Rainfall (mm) T emp. (°C) Gu dalur Rainy days (No.) Rainfall (mm) T emp. (°C) RH (%) Hazaribag Rainy days (No.) Rainfall (mm) T emp. (°C)	Maximum Minimum Maximum Minimum Morning Evening Evening Maximum Minimum		07 58 38.23 26.56 June 17 418 23.2 16.8 96.7 88 June 9 125.5 35.8 30.9	13 173.2 34.19 26.81 July 24 460 21.9 17 98.3 93.2 July 19 192.2 30.9 19.5	13 210.8 31.97 26.58 August 23 458 22.3 16.3 98.5 91.7 August 25 225.4 28.9 18.9	7 474.4 32.43 26.30 Sep 19 413 25.7 16.5 95.3 90.6 Sep 25 285.6 30.1 18.6	3 38 32.26 22.55 Oct 11 191 25.7 16.5 93.6 86.4 Oct 7 243.2 28.5 13.7	Nil 0 29.3 15.5 Nov 8 67 25.6 15.1 91.2 75.2 Nov 0 0 26.8 8.8	2 10.8 22.19 11.52 Dec 11 58 23.9 15.2 90.4 72 Dec 3 49.8 27 3.5	- - - Jan - - - - Jan - - Jan - - - - - - - - - - - - - - - - - - -		
13	Rainy days (No.) Rainfall (mm) T emp. (°C) Gu dalur Rainy days (No.) Rainfall (mm) T emp. (°C) Haz aribag Rainy days (No.) Rainfall (mm) T emp. (°C) Rainfall (mm)	Maximum Minimum Maximum Minimum Morning Evening Maximum Minimum Morning	- - May 13 214 26.4 19.3 94.2 78.4 May 8 122.2 40 11.5 56.03	07 58 38.23 26.56 June 17 418 23.2 16.8 96.7 88 June 9 125.5 35.8 30.9 61.13	13 13 173.2 34.19 26.81 July 24 460 21.9 17 98.3 93.2 July 19 192.2 30.9 19.5 86	13 210.8 31.97 26.58 August 23 458 22.3 16.3 98.5 91.7 August 25 225.4 28.9 18.9 87	7 474.4 32.43 26.30 Sep 19 413 25.7 16.5 95.3 90.6 Sep 25 285.6 30.1 18.6 86.3	3 38 32.26 22.55 Oct 11 191 25.7 16.5 93.6 86.4 Oct 7 243.2 28.5 13.7 79.42	Nil 0 29.3 15.5 Nov 8 67 25.6 15.1 91.2 75.2 Nov 0 0 0 26.8 8.8 76.63	2 10.8 22.19 11.52 Dec 11 58 23.9 15.2 90.4 72 Dec 3 49.8 27 3.5 79.9	Jan Jan		
13	Rainy days (No.) Rainfall (mm) T emp. (°C) Gu dalur Rainy days (No.) Rainfall (mm) T emp. (°C) Haz aribag Rainy days (No.) Rainfall (mm) T emp. (°C) Rainfall (mm)	Maximum Minimum Maximum Maximum Morning Evening Maximum Minimum Morning Evening		07 58 38.23 26.56 June 17 418 23.2 16.8 96.7 88 June 9 125.5 35.8 30.9 61.13 48.73	13 13 173.2 34.19 26.81 July 24 460 21.9 17 98.3 93.2 July 19 192.2 30.9 19.5 86 76	13 210.8 31.97 26.58 August 23 458 22.3 16.3 98.5 91.7 August 25 225.4 28.9 18.9 87 79	7 474.4 32.43 26.30 Sep 19 413 25.7 16.5 95.3 90.6 Sep 25 285.6 30.1 18.6 86.3 79	3 38 32.26 22.55 Oct 11 191 25.7 16.5 93.6 86.4 Oct 7 243.2 28.5 13.7 79.42 57	Nil 0 29.3 15.5 Nov 8 67 25.6 15.1 91.2 75.2 Nov 0 0 26.8 8.8 76.63 51.76	2 10.8 22.19 11.52 Dec 11 58 23.9 15.2 90.4 72 Dec 3 49.8 27 3.5 79.9 55.2	Jan Jan Jan		
13	Rainy days (No.) Rainfall (mm) T emp. (°C) Gu dalur Rainy days (No.) Rainfall (mm) T emp. (°C) RH (%) Rainy days (No.) Rainfall (mm) T emp. (°C) RH (%) IIRR, Hyderabad	Maximum Minimum Maximum Minimum Morning Evening Maximum Minimum Morning Evening		07 58 38.23 26.56 June 17 418 23.2 16.8 96.7 88 June 9 125.5 35.8 30.9 61.13 48.73 June	13 13 173.2 34.19 26.81 July 24 460 21.9 17 98.3 93.2 July 19 192.2 30.9 19.5 86 76 July	13 210.8 31.97 26.58 August 23 458 22.3 16.3 98.5 91.7 August 25 225.4 28.9 18.9 87 79 August	7 474.4 32.43 26.30 Sep 19 413 25.7 16.5 95.3 90.6 Sep 25 285.6 30.1 18.6 86.3 79 Sep	3 38 32.26 22.55 Oct 11 191 25.7 16.5 93.6 86.4 Oct 7 243.2 28.5 13.7 79.42 57 Oct	Nil 0 29.3 15.5 Nov 8 67 25.6 15.1 91.2 75.2 Nov 0 0 26.8 8.8 76.63 51.76 Nov	2 10.8 22.19 11.52 Dec 11 58 23.9 15.2 90.4 72 Dec 3 49.8 27 3.5 79.9 55.2 Dec	- - - Jan - - - - Jan - - - - - - - - - - - - - - - - - - -		
13	Rainy days (No.) Rainfall (mm) T emp. (°C) Gu dalur Rainy days (No.) Rainfall (mm) T emp. (°C) Haz aribag Rainfall (mm) T emp. (°C) Haz aribag Rainfall (mm) T emp. (°C) Haz aribag Rainfall (mm) T emp. (°C) Rainfall (mm) T emp. (°C) IHRR, Hyde rabad Rainy days (No.)	Maximum Minimum Maximum Maximum Morning Evening Maximum Minimum Morning Evening		07 58 38.23 26.56 June 17 418 23.2 16.8 96.7 88 June 9 125.5 35.8 30.9 61.13 48.73 June 6	13 13 173.2 34.19 26.81 July 24 460 21.9 17 98.3 93.2 July 19 192.2 30.9 19.5 86 76 July 14	13 210.8 31.97 26.58 August 23 458 22.3 16.3 98.5 91.7 August 25 225.4 28.9 18.9 87 79 August 3	7 474.4 32.43 26.30 Sep 19 413 25.7 16.5 95.3 90.6 Sep 25 285.6 30.1 18.6 86.3 79 Sep 13	3 38 32.26 22.55 Oct 11 191 25.7 16.5 93.6 86.4 Oct 7 243.2 28.5 13.7 79.42 57 Oct 1	Nil 0 29.3 15.5 Nov 8 67 25.6 15.1 91.2 75.2 Nov 0 0 26.8 8.8 76.63 51.76 Nov 1	2 10.8 22.19 11.52 Dec 11 58 23.9 15.2 90.4 72 Dec 3 49.8 27 3.5 79.9 55.2 Dec 0	Jan		
13	Rainy days (No.) Rainfall (mm) T emp. (°C) Gu dalur Rainy days (No.) Rainfall (mm) T emp. (°C) RH (%) Rainfall (mm) T emp. (°C) Rainfall (mm) T emp. (°C) RH (%) IIRR, Hyderabad Rainy days (No.) Rainfall (mm)	Maximum Minimum Maximum Maximum Morning Evening Maximum Minimum Morning Evening	- - May 13 214 26.4 19.3 94.2 78.4 May 8 122.2 40 11.5 56.03 38.16 May - -	07 58 38.23 26.56 June 17 418 23.2 16.8 96.7 88 June 9 125.5 35.8 30.9 61.13 48.73 June 6 159.2	13 13 173.2 34.19 26.81 July 24 460 21.9 17 98.3 93.2 July 19 192.2 30.9 19.5 86 76 July 14 378.4	13 210.8 31.97 26.58 August 23 458 22.3 16.3 98.5 91.7 August 25 225.4 28.9 18.9 87 79 August 3 42.1	7 474.4 32.43 26.30 Sep 19 413 25.7 16.5 95.3 90.6 Sep 25 285.6 30.1 18.6 86.3 79 Sep 13 270.8	3 38 32.26 22.55 Oct 11 191 25.7 16.5 93.6 86.4 Oct 7 243.2 28.5 13.7 79.42 57 Oct 1 3.0	Nil 0 29.3 15.5 Nov 8 67 25.6 15.1 91.2 75.2 Nov 0 0 26.8 8.8 76.63 51.76 Nov 1 10.7	2 10.8 22.19 11.52 Dec 11 58 23.9 15.2 90.4 72 Dec 3 49.8 27 3.5 79.9 55.2 Dec 0 3.8	Jan		

ICAR-IIRR - AICRPR - A	Innual Progress	Report 2023,	Vol.2,	Plant	Pathology
------------------------	-----------------	--------------	--------	-------	-----------

S. No	Location/	Details			We	ather data froi	n May-2023	to January-2	024		
		Minimum	-	25.6	23.3	23.2	22.5	19.9	19.8	15.0	16.0
	RH (%)	Morning	-	72	88	85	90	85	87	82	87
		Evening	-	42	71	61	68	42	51	45	37
16	Imphal		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		13	25	16	25	14	9	3	3	-
	Rainfall (mm)		77.5	173.2	256.2	166	150.3	41.7	63.9	47.3	-
	Temp. (°C)	Maximum	36.8	35.5	34.4	35.6	34.2	31.2	30.4	25.8	-
		Minimum	16.3	18.8	21.4	21.3	21	14	8	7	-
	RH (%)	Morning	71.2	81.5	83.9	90	86.9	86	87.4	86.2	-
		Evening	46.8	65.8	63.9	72.9	66.4	59.6	52.7	55.1	-
17	Jagdalpur		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		8	9	16	16	14	1	1	2	-
	Rainfall (mm)		163.5	232.9	398.3	213.3	232.3	6.2	15.8	54	-
	Temp. (°C)	Maximum	35.3	35.7	29.5	29.9	29.4	31.7	30.4	27.5	-
		Minimum	21	22.7	22.6	22.1	22.1	17.9	16.1	11.7	-
	RH (%)	Morning	81.8	78.8	91	91.5	93.5	89.7	87.5	87.6	-
		Evening	42.6	44.8	76	71.2	75.9	48.7	49.3	49.3	-
18	Jagtial		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Weather data not av	ailable									
19	Karaikal		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		3	4	2	2	6	5	25	10	3
	Rainfall (mm)		51.5	69.2	10.6	78.5	62.7	53.5	886.8	190.2	307.2
	Temp. (°C)	Maximum	36.9	38	36.9	37.6	36.5	36.4	31.3	30.6	30.8
		Minimum	26.7	27	26.6	26.2	26	25.5	24.6	23.8	22.6
	RH (%)	Morning	87	80	75	82	80	86	94	93	90
		Evening	61	52	49	51	51	60	80	78	71
20	Karjat		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		0	10	31	25	22	2	2	-	-
	Rainfall (mm)		0	462.8	2238.1	392.9	612.6	83	41.8	-	-
	Temp. (°C)	Maximum	42.4	35.3	27.8	30.25	30.21	24.57	34.39	-	-
		Minimum	21.9	26.14	24	24.99	24.16	17.63	19.92	-	-
	RH (%)	Morning	77.1	90	92.1	92.3	89.6	90.1	87	-	-
		Evening	43.5	79	84.6	79	83.1	57	56.5	-	-
21	Kaul		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		5	8	13	3	3	2	1	1	-
	Rainfall (mm)		72	166.9	388.5	20	50.9	30.6	11.3	7.5	-
	T emp. (⁰C)	Maximum	36	36.1	27	34.3	34.3	32.2	27.8	21.8	-
		Minimum	20.2	24.6	20.5	26.2	23.9	16.8	11.9	6.9	-
	RH (%)	Morning	74	83	93	91	94	93	96	97	-
		Evening	45	57	83	73	67	57	61	72	-
22	Khudwani		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		14	12	14	2	3	5	4	2	-
	Rainfall (mm)		96.1	92.6	206.6	12.8	37.4	59.4	31.5	23	-
	Temp. (°C)	Maximum	21.8	28.8	27.9	31.4	29.4	22.5	15	10.3	-

ICAR-IIRR - AICRPR – Annual Progress Report 2023	, Vol.2, Plant Pathology

S. No	Location/	Details	We ather data from May-2023 to January-2024 8.1 13.6 16.6 12.8 5.2 0.5 3.5								
		Minimum	8.1	13.6	16.6	16.2	12.8	5.2	0.5	-3.5	-
	RH (%)	Morning	85.8	83.7	89.3	86.3	88.5	90.1	92.3	91.6	-
		Evening	62.8	53.4	62.5	50.8	44.3	61.5	78.4	80.1	-
23	Lonavala		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		0	13	30	30	21	3	3	0	0
	Rainfall (mm)		0	492.3	2624.3	572.1	682.2	135.4	43.5	0	1.2
	T emp. (⁰C)	Maximum	33.5	35.9	28.9	26.6	27.3	30.7	29.5	29.5	31.9
		Minimum	14.5	19.5	16.7	17.6	16.3	15.3	13.9	13.9	14.1
	RH (%)	Morning	83.3	75.2	90.9	92.9	90.8	90.75	98.1	98.7	70.4
		Evening	46	57.6	76.9	92.6	88.3	83.2	76.8	74.8	59.6
24	Ludhiana		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		5	4	0	4	6	4	2	-	-
	Rainfall (mm)		48.4	94	0	77	55	34	28.6	-	-
	T emp. (⁰C)	Maximum	35.5	36.8	33	34.6	33.2	30.7	26.2	-	-
		Minimum	21.2	26.3	27.3	27.4	25	17.8	13.1	-	-
	RH (%)	Morning	60	67	81	82	86	89	91	-	-
		Evening	29	41	69	62	60	42	45	-	-
25	Malan		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		0	3	19	11	5	2	1	-	-
	Rainfall (mm)		15.2	18.4	108.92	102.2	31.4	29.6	15.4	-	-
	T emp. (⁰C)	Maximum	31.6	32.95	30.49	30.13	30	29.97	28.7	-	-
		Minimum	16.45	16.59	16.02	15.53	13.12	12.64	11.91	-	-
	RH (%)	Morning	78.57	79.46	74.44	73.92	75.53	76.51	74.03	-	-
		Evening	73.2	75.24	71.82	70.78	71.38	57.19	69.35	-	-
26	Mandya		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		6	0	5	2	6	4	5	0	-
	Rainfall (mm)		163	1	40	45.7	65.6	89.5	56.6	0	-
	Temp. (°C)	Maximum	33.1	31.6	28.6	32.3	28.2	31.3	29.7	29.8	-
		Minimum	22.2	21.9	19.5	19.4	20.6	19.4	19.4	18	-
	RH (%)	Morning	77.6	79.3	84.1	85	85.1	85.8	82.9	82	-
		Evening	56.4	57	68.4	58.8	59	60	59	57.8	-
27	Maruteru		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		8	7	17	8	9	0	4	3	-
	Rainfall (mm)		119	71.1	197.3	119.3	79.4	8.1	25.2	275.8	-
	Temp. (°C)	Maximum	35.03	35.13	31.35	30.45	31.17	33.43	30.6	28.71	-
	DII (0/)	Mamina	21.94	22.87	24.77	27.13	27.07	26.9	22.32	20.77	-
	KH (%)	Evoning	85.58 46.20	65.27	83.42 72.10	84 72.42	87.0	60.72	80.4 66.6	57.22	-
20	Managemen	Livening	40.29	03.27	72.19 Jacks	13.42	02.07	09.75	New	57.25 Dec	- Lan
28	Rainy days (No.)		1 via y 6	21	20	August	23	16	14	7	Jan
	Rainfall (mm)		100.4	310.1	502.3	90.6	420.6	348.6	290.4	76.1	
	Temp. (%C)	Maximum	34.3	32.7	30.3	33	32.1	32.5	32.7	34.1	-
		Minimum	26.5	25.1	24.2	26.9	26.6	26.6	26.9	26.2	_
	RH (%)	Morning	82.4	91.2	91.6	84	91.2	88.9	87.6	83.6	_
	(/0)	Evening	72.7	85.2	88.6	75.9	86.5	78.7	76.9	72.4	_
	1	2.5		00.2	00.0	, ,	00.0	, 5. ,	, , , , , ,	,	1

ICAR-IIRR - AICRPR – Annua	l Progress Report	t 2023, Vol.2,	Plant Pathology
----------------------------	-------------------	----------------	-----------------

S. No	Location/1	Details	Weather data from May-2023 to Janua					o January-20	024		
29	Mugad		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		4	3	21	10	7	1	3	0	-
	Rainfall (mm)		52	29	521.6	46.2	61.4	24.2	66	2.2	-
30	Navsari		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		0	9	26	7	12	0	2	0	-
	Rainfall (mm)		0	306	1130	40	289	0	42	0	-
	Temp. (⁰C)	Maximum	35	33.8	29.5	30.6	31.8	35.1	33.7	30.09	-
		Minimum	25.7	26.9	24.8	25.2	24.3	21.8	19.1	17.1	-
	RH (%)	Morning	83	84	96	91	95	92	80	87	-
		Evening	56	68	89	76	73	48	43	46	-
31	Nawagam		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		2	7	15	3	6	0	1	0	-
	Rainfall (mm)		40.0	214.8	334.4	19.0	126.1	0.0	29.5	0.0	-
	Temp. (°C)	Maximum	41.0	36.0	32.2	31.4	32.3	34.8	32.4	29.8	-
		Minimum	24.9	25.1	24.9	24.3	25.2	21.1	17.2	15.8	-
	RH (%)	Morning	59	72	83	85	84	79	72	78	-
		Evening	28	56	74	69	71	49	45	47	-
32	Nellore		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		1	2	5	1	6	5	14	4	0
	Rainfall (mm)		3	25.2	76.6	16	80.6	41	296	579.4	0
	T emp. (⁰C)	Maximum	36.8	36.8	32.5	34	33.6	32.8	28.7	27.4	27.2
		Minimum	24.1	25.3	25	25.3	24.8	23.4	23	22	24
	RH (%)	Morning	67.7	65.1	69	62.7	64	67.7	87.5	85.5	81
		Evening	49.6	46.1	57	48.5	50.1	54	77.2	73.7	77.1
33	New Delhi (IARI)		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Weather data not ava	ailable									
34	Pantnagar		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		6	6	14	15	7	1	3	0	-
	Rainfall (mm)		114.00	125.60	597.60	395.20	301.80	7.40	15.70	0	-
	Temp. (°C)	Maximum	34.00	37.10	32.40	32.40	32.70	31.60	27.70	23.60	-
		Minimum	20.10	24.70	26.20	26.00	24.70	17.60	12.70	7.80	-
	RH (%)	Morning	70.10	72.10	85.30	90.90	89.60	85.50	88.30	91.00	-
		Evening	36.00	43.60	74.30	72.50	67.50	44.90	43.60	47.60	-
35	Patna		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		4	8	19	19	20	8	0	3	2
	Rainfall (mm)		33.62	68.44	218.67	125.5	165.85	57.36	0	11.67	23.5
	Temp. (⁰C)	Maximum	45	47	40	35.8	34	31	33	28	24
		Minimum	23	28	26	26	25	18	15	8	8
	RH (%)	Morning	70	87	97	95	91	89	86	89	81
		Evening	10	20	79	53	55	30	26	20	40
36	Pattambi		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		2	14	17	3	20	10	9	1	1
	Rainfall (mm)		75.5	304.9	542.1	42.2	461.2	248.1	351.5	28	28.2
	Temp. (°C)	Maximum	34.7	31.4	29.1	31.7	30.3	32.1	32.7	32.4	32.9
		Minimum	24.1	22.7	21.8	22.2	22.3	22.5	21.7	22.1	20.4
	DII (0/)	Morning	89.2	91.7	95.7	94.7	95.6	94.9	92	90.5	87.6

ICAR-IIRR - AICRPR	- Annual Progress	Report 2023,	Vol.2,	Plant	Pathology
--------------------	-------------------	--------------	--------	-------	-----------

S. No	Location/1	Details	We a ther data from May-2023 to January-2024									
		Evening	54.4	72.2	80.2	64.3	76.1	71.7	69	66	56.2	
37	Ponnampet		May	June	July	August	Sep	Oct	Nov	Dec	Jan	
	Rainy days (No.)		10	15	28	5	17	6	2	0	1	
	Rainfall (mm)		189.3	122.3	774.8	102	251.6	145.3	78	0	22.2	
	T emp. (⁰C)	Maximum	32	28	26	29	27	30	30	29	30	
		Minimum	20	20	20	19	20	20	20	17	18	
38	Pusa		May	June	July	August	Sep	Oct	Nov	Dec	Jan	
	Rainy days (No.)		5	5	7	17	12	7	0	-	-	
	Rainfall (mm)		37.4	92.6	146.2	532.9	434.6	39.6	0	-	-	
	Temp. (°C)	Maximum	35.5	38.3	33.9	32.2	32.7	31.9	29.8	-	-	
		Minimum	21.3	24.6	25.4	24.7	24.4	21.9	16.3	-	-	
	RH (%)	Morning	79	79	90	93	94	94	95	-	-	
		Evening	45	46	70	77	76	64	53	-	-	
39	Raipur		May	June	July	August	Sep	Oct	Nov	Dec	Jan	
	Rainy days (No.)		3	6	18	14	15	1	2	2	-	
	Rainfall (mm)		71.4	226.4	501.8	348.6	479.6	9.4	7.5	17.8	-	
	T emp. (⁰C)	Maximum	39.4	39.5	32.2	31.7	31.04	32.46	30.68	27.3	-	
		Minimum	24.36	27	25.7	25.08	25	20.9	17.69	13.08	-	
	RH (%)	Morning	61.96	61.1	88	88.87	91	88.35	86.1	88.12	-	
		Evening	27.38	42.46	72	68.03	72	44.41	42.5	42.61	-	
40	Rajendranagar		May	June	July	August	Sep	Oct	Nov	Dec	Jan	
	Rainy days (No.)		-	6	14	3	13	1	1	0	0	
	Rainfall (mm)		-	159.2	378.4	42.1	270.8	3.0	10.7	3.8	0.0	
	T emp. (⁰C)	Maximum	-	36.4	29.2	31.0	30.0	32.0	30.2	28.3	29.9	
		Minimum	-	25.6	23.3	23.2	22.5	19.9	19.8	15.0	16.0	
	RH (%)	Morning	-	72	88	85	90	85	87	82	87	
		Evening	-	42	71	61	68	42	51	45	37	
41	Ranchi		May	June	July	August	Sep	Oct	Nov	Dec	Jan	
	Rainy days (No.)		2	7	15	11	17	5	0	3	-	
	Rainfall (mm)		16.4	91.6	276.8	193.8	497.8	223.7	2.0	38.8	-	
	T emp. (⁰C)	Maximum	40.4	41.6	37.4	35.4	35.4	32.5	29.0	28.5	-	
		Minimum	37.5	37.9	32.9	31.5	31.3	29.1	26.0	24.9	-	
	RH (%)	Morning	85.8	86.9	86.6	87.0	86.6	86.6	86.7	86.7	-	
		Evening	70.1	70.3	70.3	70.6	70.1	69.9	69.8	69.2	-	
42	Rewa		May	June	July	August	Sep	Oct	Nov	Dec	Jan	
	Rainy days (No.)		-	4	8	10	7	1	-	-	-	
	Rainfall (mm)		-	100.6	286.6	315.2	67.4	3	-	-	-	
	Temp. (°C)	Maximum	-	38.92	33.56	31.2	32.47	31.73	28.5	-	-	
		Minimum	-	25.61	24.65	24.77	24.13	18.78	12.52	-	-	
	RH (%)	Morning	-	56.27	76.71	84.55	85.63	85.06	81.27	-	-	
		Evening	-	37.13	58.81	68.94	70.3	56.58	38.53	-	-	
43	Sabour		May	June	July	August	Sep	Oct	Nov	Dec	Jan	
	Rainy days (No.)		-	-	-	-	-	-	-	-	-	
	Rainfall (mm)		27	253.8	198.6	358.2	445.6	222	0	8	-	
	Temp. (°C)	Maximum	36.9	38.4	33.8	33.3	33.2	32.1	30	25	-	
		Minimum	22.3	25.4	26.1	25.5	25.2	21	15.6	11	-	

ICAR-IIRR - AICRP	R – Annual Progress	Report 2023,	Vol.2, Plant I	Pathology

S. No	Location/		We a ther data from May-2023 to January-2024								
	RH (%)	Morning	75.6	76.8	89.1	92.2	91.8	93.5	93.6	94	-
		Evening	45.5	49.5	65.6	70.1	69.9	62.7	64	77.3	-
44	Titabar		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		13	13	15	15	9	17	2	1	-
	Rainfall (mm)		4.6	9.3	5.46	6.4	4.1	8.7	0.7	0.2	-
	T emp. (°C)	Maximum	31.5	33.2	33.85	33.2	34.6	32.4	29.1	25.9	-
		Minimum	18.8	22.1	23.44	22.9	22.8	20.7	12.9	9	-
	RH (%)	Morning	93.6	92	91.32	94.2	92.7	94.9	91.9	94.2	-
		Evening	78.1	76.7	75.26	73.8	70.1	73.4	60.5	60.3	-
45	Umiam (Barapani)		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		13	22	16	-	-	-	-	-	-
	Rainfall (mm)		230.1	616.1	230.5	-	-	-	-	-	-
	T emp. (°C)	Maximum	28.2	27.8	28.2	-	-	-	-	-	-
		Minimum	16.9	19.5	20.4	-	-	-	-	-	-
	RH (%)	Morning	87.16	91.13	90.68	-	-	-	-	-	-
		Evening	71.65	84.1	85.19	-	-	-	-	-	-
46	Upper Shillong		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		17	26	22	25	15	-	-	-	-
	Rainfall (mm)		154.2	623	366.8	367.4	202.2	-	-	-	-
	Temp. (°C)	Maximum	22.99	23.01	23.28	23.26	24.18	-	-	-	-
		Minimum	13.82	16.68	17.74	17.53	17.24	-	-	-	-
	RH (%)	Morning	94.34	96.85	97.12	97.48	96.51	-	-	-	-
		Evening	53.99	75.79	79.66	79.44	71.6	-	-	-	-
47	Varanasi		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Rainy days (No.)		-	-	-	-	-	-	-	-	-
	Rainfall (mm)		-	128.2	120.4	149.6	72.8	130.8	8.3	3.6	-
	T emp. (°C)	Maximum	-	42.7	35.9	34.5	34.6	34.9	32.1	25.3	-
		Minimum	-	21.9	26.2	23.3	25.2	21.4	14.8	9.8	-
	RH (%)	Morning	-	87	90	92	95	94	96	94	-
		Evening	-	30	64	67	69	54	50	47	-
48	Wangbal		May	June	July	August	Sep	Oct	Nov	Dec	Jan
	Weather data not av	ailable									

S. No.	Location	Latitude (North)	Longitude (East)	Elevation (m. from MSL)	Ecosystem	Sowing (Year, 2023)	Fertilizer Basal - NPK (Kg/ha)	Fertilizer top dressing (Kg/ha)
1	Aduthurai	11° N	79 ° E	19.5 m	Irrigated	13-09-2023	37.5:50:25	112.5:0:25(NPK)
2	Almora	29°36'N	79°40'E	1250 m	Upland	18-07-2023 LB 25-07-2023 BS	60:60:40 20:60:40	20+20N(30DAT & 60DAT)
3	Arun dhutinagar	· –	-	-	-	-	-	-
4	Bankura	23°24' N	87°05'E	84 m	Upland (Rainfed) Rainfed Shallow lowland Upland (Irrigated – Boro only)	26-06-2023	10:26:26 18Kg+SSP 9Kg+Urea 10Kg	1st top dressing at 21 DAT urea10Kg and 2nd top dressing at 42 DAT urea 10 Kg
5	Chatha	32°40'N	74°18'E	293 m	Irrigated	06-07-2023	40:60:30	40+40 N (1 st and 2 nd top dressing)
6	Chinsurah	22°52'N	88°24'E	8.62 m	Irrigated	13-07-2023	60:50:30	60
7	Chiplima	20°21'N	80°55'E	178.8 m	Irrigated	11-07-2023	100:40:40 50:40:20	25:0:20 NPK (tillering stage) 25:0:0 NPK (PI stage)
8	Coimbatore	11° N	77°E	409 m	Irrigated and Potted plants	31-10-2023 BL, 24-07-2023 BS& 16-06-2023 RTD	-	Urea 25kg for entire uniform blast nursery bed; 10g/pot (RTD)
9	Cuttack	20°23'N	85 ⁰ 17'E	36 m	Irrigated Shallow lowland	21-06-2023 SHR 28-06-2023 BL & BLB 04-07-2023	100:40:40 50 120Kg 40	Twice @25 Kg Nitrogen 20N
10	Gangavathi	15°43'N	76°53'E	1332 ft	Irrigated	20-10-2023 LB 27-10-2023 BS 28-07-2023 ShB & BLB	250:75:75-Blast, ShB & BLB 50:75:75-BS	-
11	Ghaghraghat	27°50'N	81°20'E	112m	Irrigated	08-07-2023	-	-
12	Gudalur	11°30'N	76°30'E	950 m	Irrigated	22-08-2023 BL & FS 21-08-2023 BS	100:50:50	Urea 15 kg for entire uniform blast nursery bed; for false smut 50 kg N/ha
13	Hazaribagh	23° 95'91''N	85° 37'20''Е	614 m	Upland	-	75:60:30 BL & 50:60:30 BS	75:0:0 BL
14	IIRR	17°19'N	78°23'E	542m	Irrigated	12-08-2023	45:60:40	135N
15	Imphal	24°45' N	93°54' E	774 m	Rainfed lowland	03-08-2023	80:60:40	40N
16	Jagdalpur	19°05' N	81°57'E	556 m	Upland/ Rainfed	08-08-2023	60:60:60	30:30 (N:N)
17	Jagtial	18°831'N	78°96'E	264m	Irrigated	15-07-2023 BLB 09-11-2023 BL	120 Nitrogen 40	40+40
18	Karaikal	10°55'N	79°52'E	4	Irrigated	-	150:50:50:25Zn 75:50:50:25Zn	75N
19	Karjat	18°55'N	73°15'E	51.7 m	Rainfed lowland	10-07-2023 BLB & ShR 19-07-2023 BL	-	70 N
20	Kaul	29°51'N	76°39'E	230.7 m	Irrigated	05-07-2023	50:0:60	100 N
21 22	Khudwani Lonavala	33.73°N 18.9°N	75.15°E 73.5°E	1601 m 622m	Irrigated Rainfed	11-07-2023 3-07-2023 - 10- 07-2022	60:60:30 60:50:50	60 N
23	Ludhiana	30°90'N	75° 85'E	262 m	Irrigated	10-07-2023	Urea 37kg/Acre	Urea 74kg/Acre
	1	1				I		

Annexure - II $Details \ on \ the \ locations \ where \ Coordinated \ Pathology \ Screening \ trials \ were \ conducted \ during, \ Kharif \ 2023-2024$

S. No.	Location	Latitude (North)	Longitude (East)	Elevation (m. from MSL)	Ecosystem	Sowing (Year, 2023)	Fertilizer Basal - NPK (Kg/ha)	Fertilizer top dressing (Kg/ha)
24	Malan	32°1'N	76°2'E	950 m	Upland	20-06-2023	120:40:40 60:40:40	60 N
25	Mandya	12°36'N	76°15'E	694.65 m	Irrigated	26-10-2023 BL 05-09-2023 ShB 02-08-2023 NB	200:50:50 100:50:50	50:0:0 (15 DAT) 50:0:0 (30 DAT)
26	Maruteru	16°38'N	81°44'E	5m	Irrigated	18-07-2023	150:40:40 50:40:20	50:0:0 (NPK) 50:0:20
27	Faizabad (Masodha)	26°47'N	82°12'E	113 m	Irrigated	07-07-2023	ShB- 60:60:60 BLB-75:60:60	ShB-60, BLB-75 N & 25 ZnSo ₄
28	Moncompu	9 ⁰ 51'N	76°5'E	Below MSL	Irrigated	17-07-2023	120:45:45 Kg/ha 1/2N,1/3P&K	15DAP-1/4N, 1/3P&K, 40DAP-1/4N, 1/3P&K
29	Mugad	50°26'N	74°54'E	697m	Rainfed drill sown lowland	22-08-2023	100:50:50 33:50:50	33 kg N/ha at 30 days after sowing and 33 kg N/ha at 60 days after sowing.
30	Navsari	20 °57'N	72°90'E	10 m	Irrigated	14-07-2023	150:50:0 75:50:0	Remaining 75 N given in two splits at 30 days intervals.
31	Nawagam	22°48'N	71°38'E	32.4 m	Irrigated	21-07-2023	120:30:0 60 N + 30 P ₂ O ₅ .	60 N+20 ZnSO ₄
32	Nellore	14°27'N	79°59'E	20 m	Upland	05-01-2024	150:60:40 75:60:20 20 kg/acre-Zn	37.5+37.5 0 20 (30DAT & 60DAT)
33	New Delhi (IARI)	28°08'N	77°12'E	216 m	Irrigated	13-07-2023 ShB	-	-
34	Pantnagar	29°N	79 ⁰ 30 [°] E	343.84 m	Irrigated	09-07-2023	60:60:40-25Kg (ZnSO4)	60N
35	Patna	25°13N	84°14E	77m	Irrigated	12-07-2023	120:60:40 NPK kg/ha	-
36	Pattambi	10°48'N	76°12'E	25.35 m	Upland Rainfed lowland	14-07-2023 BL 13-07-2023 ShB & BLB	120:30:30 80:30:15	40:0:15
37	Ponnampet	12°29'N	75°56'E	856 m	Rainfed lowland	08-08-2023 UBN 01-08-2023 Field	75:75:90 37.5:75:45	37.5:0:45
38	Pusa	25°98'N	85 °67'E	51.8 m	Irrigated	12-07-2023	80:40:20	20+20 N
39	Raipur	21° 16'N	81°36'E	681 m	Irrigated	13-07-2023	120 60	60N as a spray in two split doses
40	Rajendranagar	17º 19'N	78°23'E	542 m	Irrigated	09-12-2023 BL 27-06-2023 NB 08-07-2023 ShR	2.5 N for UBN 180:60:0	
41	Ranchi	23° 17'N	85° 19'E	625m	Upland	21-07-2023 (direct sown)	60:30:20 30:30:20	15+15 N
42	Rewa	24°30'N	81°15'E	360 m	Upland Irrigated	05-08-2023	80:60:40 40	40
43	Sabour	25°23'N	87°07'E	37.19 m	Rainfed lowland	12-07-2023	40:40:20	20+20 N
44	Titabar	26°60'N	94°20'E	99 m	Irrigated	29-07-2023 to 01-08-2023	60:20:40 30:20:40	15+15 N
45	Umiam (Barapani)	25°30' N	91°51' E	1000m	Upland	25-05-2023	60:60	60
46	Upper Shillong	25° 54'24" N	91° 83' 96" E	1814 m	Rainfed	17-07-2023	50:40:40 25:40:40	25
47	Varanasi	25º20' N	23°03'E°	75.7 m	Irrigated	19-07-2023	180:60:60 120:60:60	15+15 N
48	Wangbal	24°8'N	94'E	781 m	Rainfed lowland	22-08-2023	-	-

Note: (-) data not received

Name of the centre	Code	Details	Code
Aduthurai	ADT	(-)	Data not available
Almora	ALM	А	Artificial Inoculation
Arundhatinagar	ARD	AVTs	Advanced variety trails
Bankura	BAN	BB	Bacterial blight
Chatha	CHT	BS	Brown spot
Chinsurah	CHN	CV	Co-efficient of variation
Chiplima	СНР	DSN	Donor Screening Nursery
Coimbatore	CBT	FS	False Smut
Cuttack (NRRI)	CTK	GD	Glume discoloration
Gangavathi	GNV	GSN	Germplasm Screening Nursery
Gerua	GER	IC No.	Indigenous collection Number
Ghaghraghat	GGT	IET No.	Initial Evaluation Trail Number
Gudalur	GDL	IVTs	Initial variety trails
Hazaribagh	HZB	LB	Leaf blast
Imphal	IMP	LSD	Least significant difference
Indian Institute of Rice Research	IIRR	LSI	Location Severity Index
Jagadalpur	JDP	MSL	M ean sea level
Jagtial	JGT	N	Natural Infection
Karjat	KJT	NB	Neck blast
Kaul	KUL	NdB	Node blast
Kudhwani	KHD	NHSN	National Hybrid Screening Nursery
Lonavala	LNV	NSN-1	National Screening Nursery 1
Ludhiana	LDN	NSN -2	National Screening Nursery 2
Malan	MLN	NSN-H	National Screening Nursery-Hills
Mandya	MND	PI	Promising index
Maruteru	MTU	RTD	Rice Tungro Disease
Masodha (Faizabad)	M SD	RTV	Rice Tungro Virus
Moncompu	MNC	SE	Standard error
Mugad	MGD	ShB	Sheath blight
Navsari	NVS	ShR	Sheath rot
Nawagam	NWG	SI	Susceptibility Index
Nellore	NLR	StR	Stem rot
New Delhi (IARI)	NDL		
Pantnagar	PNT		
Patna	PTN		
Pattambi	PTB		
Ponnampet	PNP		
Pusa	PSA		
Raipur	RPR		
Rajendranagar	RNR		
Ranchi	RCI		
Rewa	REW		
Sabour	SBR		
Titabar	TTB		
Umiam (Barapani)	UMM		
Upper Shillong	USG		
Varanasi	VRN		
Wangbal	WBL		

Annexure - III (Abbreviations)

Progress Report-2023 report was compiled by the following scientists of Department of Plant Pathology, ICAR-IIRR, Hyderabad.

Drs. M. Srinivas Prasad, G. S. Laha, D. Krishnaveni, C. Kannan, D. Ladhalakshmi, V. Prakasam, K. Basavaraj and G.S. Jasudasu

Acknowledgement

Our thanks are due to the Scientists of all the Cooperating Research Centers for conduct of Plant Pathology Coordinated Trials and dispatch of the data.

Thanks, are also due to the Technical Staff of the Department of Plant Pathology, Sri Y. Roseswar Rao and Mr. P. Chandrakanth for their help in conduct of the coordinated trials at IIRR (ICAR-IIRR), Hyderabad. Thanks are due to Mr. K. Sai Teja and for his assistance during report preparation.

भाकृअनुप - भारतीय चावल अनुसंधान संस्थान भारतीय कृषि अनुसंधान परिषद

ICAR-Indian Institute of Rice Research Indian Council of Agricultural Research Rajendranagar, Hyderabad - 500 030